

Netamqp

 Architecture
 Connections, Channels, Classes, Methods
 How to open connections and channels
 Exceptions
 Preparing a queue
 Publishing
 Receiving

AMQP architecture

Broker (RabbitMQ)

Client

Client

Client

publish

Publish

consume

Both publishers and consumers are clients of the broker

AMQP message flow

exchange

queue 1 queue 2 queue 3

published message

consumed message

Broker
routing: e.g. queue 2
gets all messages with
routing_key "q2"

binding

Exchanges

 Predefined exchanges:
 amq.fanout: true (all queues with bindings to this

exchange get all messages)
 amq.direct: msg.routing_key = binding.routing_key
 amq.topic: msg.routing_key ~ binding.routing_key

(with wildcards)
 amq.headers: routing condition depends on msg

headers

Connections and channels

 Connection = TCP connection
 Handshake at beginning of connection, and at

end of connection
 Several independent data streams are

multiplexed over a single connection. These
streams are called channels

 Channels are numbered 1-65535. The client
chooses the channel number, and has to open
the channel. Both peers can close the channel

 Only one activity at a time per channel

Exceptions

 Errors are reported
 for the connection, or
 for the channel

 The connection or channel is closed if an error
occurs

Classes

 Broker functionality is divided into 6 classes:
 Connection (→ Netamqp_connection)
 Channel (→ Netamqp_channel)
 Exchange (→ Netamqp_exchange)
 Queue (→ Netamqp_queue)
 Basic (→ Netamqp_basic)
 Tx (→ Netamqp_tx)

Methods

 Methods: These are control messages sent via
channels

 Methods exist per class
 Example:

 Channel.open: sent by client to server
 Channel.open-ok: response by server

 Some methods use this request/response
scheme, some methods are unidirectional

 Some methods can carry payload data (content
messages), e.g. Basic.publish

Netamqp: open connection

 lib/netamqp/tests/t_connection.ml
let esys = Unixqueue.create_unix_event_system()

let p = `TCP(`Inet("localhost", Netamqp_endpoint.default_port))

let ep = Netamqp_endpoint.create p (`AMQP_0_9 `One) esys

let c = Netamqp_connection.create ep

let auth = Netamqp_connection.plain_auth "guest" "guest"

Netamqp_connection.open_s c [auth] (`Pref "en_US") "/"

 The red statement opens the connection
 auth: username/password
 en_US: locale for error messages
 "/": vhost (names a broker partition)

Netamqp: open channel

 Open the channel:

let channel = 1

let co = Netamqp_channel.open_s c channel
 "co" is now a channel object. It is needed for all

activities on the channel
 Alternative:

let co =
 Netamqp_channel.open_next_s c

(Netamqp chooses a channel number
automatically.)

Netamqp: declare a queue

 "declare" means: check that this queue exists in
this way, or create a new one. If an
incompatible queue is in the way, throw an
error
let resp_fn =
 Netamqp_queue.declare_s
 ~channel:co
 ~queue:qname (* just a string *)
 ()

let resp_qn =
 resp_fn
 ~out:(fun ~queue_name ~message_count ~consumer_count →
 queue_name
)
 ()

Netamqp: bind a queue to an
exchange

 We use a pre-defined exchange here
(no need to create one)

 Netamqp_queue.bind_s
 ~channel:co
 ~queue:qname
 ~exchange:Netamqp_exchange.amq_direct
 ~routing_key
 ()

 The routing_key is a string that is used by the
exchange for message routing

Netamqp: publish 1

 Create content message:
let body_string = "this is the payload of the message"

let msg =
 Netamqp_basic.create_message
 (* optional args: *)
 ~content_type:"text/plain"
 ~content_encoding:"ISO-8859-1"
 ~headers: ["foo", `Longstr "foofield";
 "bar", `Bool true;
 "baz", `Sint4 (Rtypes.int4_of_int 0xdd);
]
 ~delivery_mode:1 (* non-persistent *)
 (* this is required: *)
 [Netamqp_rtypes.mk_mstring body_string]

Netamqp: publish 2

 Publish the message:

Netamqp_basic.publish_s
 ~channel:co
 ~exchange:Netamqp_exchange.amq_direct
 ~routing_key
 msg

 Warning: we do not get feedback about errors
during publication (→ use Tx to enable)

 Full example:
tests/t_sender_highlevel.ml

Netamqp: consume 1

 How to set up a consumer:
 Step 1: Define a callback that is invoked for each

consumed message
 Step 2: Enable consumption
 Step 3: Run the event queue

 Full example:

tests/t_receiver_highlevel.ml

Netamqp: consume 2

 Step 1:
Netamqp_basic.on_deliver
 ~channel:co
 ~cb:(fun ~consumer_tag ~delivery_tag ~redelivered

 ~exchange ~routing_key
 msg →
 …
)

 "msg" is now same object as at publish time

 msg#amqp_body retrieves the body

 msg#content_type retrieves the MIME type

 Refinement of step 1 will be discussed later

Netamqp: consume 3

 Step 2:

Enable consumption
let consumer_tag =
 Netamqp_basic.consume_s
 ~channel:co
 ~queue:qname
 ()

 Step 3:
Unixqueue.run esys

Netamqp: consume 4

 Normally, AMQP requires that we ack each
message we consume
 Can be turned off: ~no_ack:true
 When there is an unacknowledged message, the

broker won't send us more messages
 Useful when there are several consumers reading

from the same queue: The consumers can signal
the broker whether they are idle (no un-ack'ed
message) or busy (un-ack'ed messages exist)

Netamqp: consume 5

 Step 1, refined:
Netamqp_basic.on_deliver
 ~channel:co
 ~cb:(fun ~consumer_tag ~delivery_tag ~redelivered

 ~exchange ~routing_key
 msg →

 (* now process msg, and leave msg un-ack'ed *)
 …
 (* we are done with processing, so ack: *)
 ignore(
 Netamqp_basic.ack_e (* don't use ack_s here! *)
 ~channel:co
 ~delivery_tag
 ()
)
)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

