Cluster Computing at Mylife.com

= Gerd Stolpmann
O'Caml consultant since 2005

® O

Informatikblro Gerd Stolpmann
http://www.gerd-stolpmann.de
http://www.camlcity.org

http://www.gerd-stolpmann.de/

Overview

= What is Mylife.com?

= Block Diagram

= What is a cluster?

= Technologies

= Standard Components

= Error handling for asynchronous RPC
= Example: Multisearcher

Mylife.com

= People search
= Mylife.com = Reunion.com + Wink Technologies

(since February 2009)

= People profiles from the web, aggregated with
licensed people data

= Web sites: mylife.com, wink.com

Block Diagram Query Path

search:

search_term + document_ids

Web Frontend Abstract Server

Digest Server
(partition 1)

N 4
N 7,

%
digest lookup:
_ _ Digest Server
document_id = digest (partition 2)
digest = document prepared for search result P
\

Digest Server

(partition N)

What is a cluster? (1)

= Group of machines executing together jobs, or
providing together services

= Base setup of the machines is identical
= More "power” than a single machine

= Higher availability than a single machine
(in theory)

= Many components running on a cluster

= Components often deployed in a highly
symmetrical way ("grid”)

= Data organization needs to be cluster-aware

What is a cluster? (2)

= Client/server architectures

= Mylife: Remote Procedure Call

= Problems:

= Server: How do | make myself known to others?
= Client: How do | find the right server?

= Client: How do | detect that the server is down?
= Client: How do | react on a failed server?

= Server: Parallelization

= Client + server: Service concurrency

= Dumb client vs. Intelligent client

What is a cluster? (3)

= Further problems:

= Architecture: Avoid overload ("all on one”)
= Network topology
= How is data safely stored?

Technologies (1)

= Programming Languages
= Ocaml: Most of our own backend programming

= Java: Web Frontend, Lucene, Hadoop, HDFS
= PHP: Web Frontend

= Remote Procedure Call

= Sun RPC (only for Ocaml-Ocaml communication)

= ZeroC ICE + Hydro (only for Ocaml-other language
communication)

= Some REST for customer APIs

Technologies (2)

= Asynchronous RPC

= Supported by Ocaminet implementation of SunRPC, and by
Hydro

= Client-side: useful for querying several severs at the same
time

= Server-side: useful for resource-saving implementations

= Multiprocessing

Generally favored over multi-threading

Needed for exploiting more than one core (locally, across
the net)

Get more stable code more quickly

Ocaminet-Netplex

Standard Components

= Directory and Configuration Service

= Find service in a network
= Confd: our own solution
= ZeroC ICE registry

= Port Liveliness Checker

= |s a service port alive?
= Portchecker: for SunRPC
= Hydromon: for Hydro

= Performance Counters
= Perfmon

= Standard components must be rock-stable!

Error Handling

Error cases:
= RPC server impl ends with an exception

= Solution: Log the exception, respond with an error code
= RPC call takes too long

= Solution: Set timeout on client side
= Different kinds of timeouts possible (next slide)

= Node Is unavailable
= Behavior 1: Router responds with "Host unreachable” error
= Behavior 2: No reaction at all!

= Part of the solution: Set timeout on client side
= Problem: Timeout cascades; distinguish from "too long” case

= Socket I/O: sequence of primitive operations
(connect/send/recv/shutdown)

= Simple timeout model:
set timeout per |/O primitive

However: SLAs define maximum time for user
operations like search

= Correct timeout model:
set timeout per user operation

= We use something in-between:
set timeout per RPC call or complex operation

Asynchronous RPC (1)

= Defined on top of Ocaminet's equeue library

val search :
client » 'a = ((unit - 'b) — unit) — unit

= Example call:

search
client
arg
(fun get reply -
try
let r = get reply() in

with error - ..

)

= Also encapsulation of such calls as engines
possible (see Ug engines)

Asynchronous RPC (2)

= Pure timers are also possible
Unixqueue.once tmo (fun () = ...)

= Timeout handling:

= Set timer
= Start RPC call

= When timer expires before call returns:
call is canceled

= When RPC call returns before timer expires:
timer is canceled

= Cancellation of operations is essential!

Portchecker

val port is alive : Unix.sockaddr - bool

= Installed on every machine as local service

= Communication by shared memory

= Zero per-port configuration

= Starts pinging when port is alive is called
= 3 failures in sequence mean "port is dead”

= Ping: RPC procedure 0 is called

Example: Multisearcher (1)

= Problem: Search corpus is too large for single
machine

= Solution: Split it into N partitions, and put each
partition on a separate machine

= Distributed search: Each user request is sent to
all machines simultaneously, and results are
merged

= Terminology:

Unisearcher. the search engine for a single partition
Multisearcher: distribution of searches

Example: Multisearcher (2)

| N
[]
search
D <
SearCh SearCh -— .
YY)) <
N search
N -
N -

Example: Multisearcher (3)

= For this example, assume a simple redudancy
solution: each partition is installed twice, and
each machine holds two distinct partitions

= Node liveliness check before each search:
dead nodes are thrown out
— Portchecker

= Timeout for the whole multisearch:
If only some nodes responded in time, take only
the available results

Example: Multisearcher (4)

Implementation of multisearcher server:

let multisearch arg emit =
let unisockaddresses =
<pick sockaddress of one live unisearcher per partition> in
let uniclients = List.map open connection unisockaddresses in

(* Set timer:)
Unixqueue.once 2.0
(fun () — List.iter close connection uniclients);

(* this function is called when uni results r available: ¥*)
let have unisearcher results r =

List.iter close connection uniclients;

emit r

Continued on next slide

Example: Multisearcher (5)

(* Simultaneous searches on unisearchers:)
let results = ref <empty> in
let n = ref 0 in
List.iter
(fun uniclient -
Unisearcher.search

uniclient
arg
(fun get reply -
(try
let r = get reply() in
results := <merge> !results r
with error — .. (* e.g. Timeout, client down ¥*)
) i
decr n;
if !n = 0 then have unisearcher results !result
) i
incr n

)

uniclients

The end

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

