
GODI User’s Manual

Gerd Stolpmann

10th October 2004

Chapter 1

Getting and Installing GODI

GODI is an O’Caml distribution that is compiled and installed from sources. This has a
number of advantages:

• The software is up to date, because it is usually very simple for package maintainers
to update to a new version.

• GODI supports a wider range of operating systems, not only a single one like other
distribution efforts.

• GODI needs only very little infrastructure, especially centralised services. GODI needs
only a software repository, and a distribution service for files, but not the really com-
plicated things like compile farms etc.

Of course, the downside is that the GODI users must do more than for distributions where
the software is available in binary form. First, the basic “C toolchain” to build C programs
must be already installed on the system, and it must work. Second, the development parts
of the system libraries must be installed on the system, e.g. C header files. The users must
also recognize when additional external libraries are required for certain GODI packages.
Third, the users’ patience is sometimes stressed, as it takes a bit of time to build software.
Fourth, the users should be prepared that sometimes things go wrong. The GODI developers
cannot guarantee that the distributed build procedures work on every system. Sometimes
they make too optimistic assumptions, for instance it is sometimes expected that the OS has
features it actually does not have (e.g. that shell utilities have GNU extensions). Such errors
happen from time to time, and the developers are glad when the users inform them about
such mistakes. Of course, this would require that the users have some skills recognizing
them. Summarised, the GODI users need some basic skills in system and software build
management.

Resources

There are a number of on-line resources that are important for users:

1

• GODI homepage: http://www.ocaml-programming.de/godi/

• GODI mailing list: https://gps.dynxs.de/mailman/listinfo/godi-list

• GODI bug tracking system: https://gps.dynxs.de/tracker

1.1 Preparing your system

It is very likely that you must first install software because you can even start using GODI.
This is the generic list for all OS:

• You need gcc , the GNU C compiler. Other compilers are not supported (but may work
nevertheless). You need also the system header files, sometimes they are not installed
by default (e.g. glibc-dev on many Linux distributions).

• You need GNU make.

• You need gzip /gzcat , bzip2 /bzcat , and GNU patch

• It is an advantage to have GNU nmand GNU objcopy (enables ocamlc -pack), but
it is not required

• You need the standard Unix shell and file manipulation tools. Sometimes dc (often
bundled with bc), and m4are not installed by default.

Of course, these are only the requirements for the minimum GODI installation. Depending
on which GODI packages are installed, further software may be needed.

There is a more detailed list in the README file contained in the GODI bootstrap tarball.
It depends on the OS which of the tools come with the OS and which must be additionally
installed.

1.2 Bootstrapping

The bootstrap procedure installs the minimum GODI system. Currently, the bootstrap pro-
cedure has two stages that must be performed one after the other. Stage 1 installs basic tools
written in the C language that are required for the GODI package system. This means, after
stage 1 the installed software is managed in the form of packages. We will discuss later what
a package really is, for now just think a package as a group of files that is added to the system
as a whole, and that can also be removed from the system as a whole.

Stage 2 installs the minimum O’Caml environment, and further parts of GODI.

In order to bootstrap, you need the bootstrap tarball, see
http://www.ocaml-programming.de/godi/
for where it can be downloaded. Basically, you execute the following steps:

2

1. Extract the bootstrap tarball:
gzip -d godi-bootstrap-<VERSION>.tar.gz
tar xf godi-bootstrap-<VERSION>.tar
cd godi-bootstrap-<VERSION>

2. Enter stage 1:
./bootstrap --prefix <PREFIX>

3. Adjust PATH, optionally edit <PREFIX>/etc/godi.conf :
PATH=<PREFIX>/bin:<PREFIX>/sbin:$PATH
export PATH

4. Enter stage 2:
./bootstrap_stage2

For stage 2, you need an Internet connection.

The bootstrap procedure is discussed in more detail in the READMEfile contained in the
bootstrap tarball, especially what to do when things do not work as expected.

As <PREFIX>, you can choose any empty or not yet existing directory. It is not possible that
<PREFIX> points to an already used directory like /usr/local as GODI needs its own
private directory hierarchy.

It is not recommended to install GODI as super-user. Either install GODI privately under
your own account, or create a special “godi” account for a shared installation.

Options

The bootstrap script (stage 1) has a number of command-line options:

• --ftp=lukemftp : Prefers the “lukemftp” utility to download files from the Internet

• --ftp=tnftp : Prefers the “tnftp” utility to download files from the Internet

• --ftp=wget : Prefers the “wget” utility to download files from the Internet. “wget” is
not included in the bootstrap tarball like the other two utilities.

• --append-path : When looking up system utilities, first system-specific standard lo-
cations are tried, and after these, the directories enumerated in the PATHvariable. This
is the default.

• --prepend-path : When looking up system utilities, first the directories enumerated
in the PATHvariable are tried, and then system-specific standard locations.

• --no-path : When looking up system utilities, only the system-specific standard lo-
cations are tried.

• --search-path <PATH> : When looking up system utilities, only the directories
enumerated in the <PATH>argument are tried.

3

+-------------------------------- GODI Console --------------------------------+

> > > Select Source Packages < < <

FL NAME INSTALLED AVAILABLE COMMENT
==========Packages available as source code:====================================
[1] apps-camlmix 1.1 1.1 Processes macros written in pu
[2] apps-cduce 0.2.1 0.2.1 XML-oriented functional langua
[3] apps-cduce-cvs 20040829 XML-oriented functional langua
[4] apps-godiva 0.9.2 0.9.2 High-level tool for simplifyin
[5] apps-headache 1.03 1.03 Tool for managing headers in s
[6] apps-ledit 1.11 1.11 Line editor wrapper
[7] apps-schoca 0.2.0 Scheme interpreter written by
[8] apps-unison 2.10.2 2.10.2 File synchronizer
[9] base-curl 7.11.2#2 7.11.2#2 The version of CURL for GODI
[10] base-expat 1.95.7#3 1.95.7#3 The version of expat for GODI
[11] base-gdbm 1.8.3#4 The GNU database manager
[12] base-pcre 4.5#1 4.5#1 The version of PCRE for GODI
[13] base-subversion-c$ 1.0.6 The subversion client allows d
[14] conf-curl 3 3 Configures which curl library
[15] conf-expat 6 6 Configures which expat library
[16] conf-freetype2 1#1 1#1 Configures which freetype2 lib
--(more)----------
[p]rev [n]ext [u]pgrade all [s]tart/continue installation [h]elp e[x]it menu
>

Figure 1.1: Selecting source packages with godi_console

1.3 Installing packages with godi_console

After the bootstrap procedure has been finished successfully, a number of programs are in-
stalled in <PREFIX>/bin and <PREFIX>/sbin . The former directory contains applications
that may be executed by everybody whereas the latter directory is reserved for administra-
tion programs. One of these is godi_console which serves as the central management
tool. It has an interactive mode when called without arguments.

After starting godi_console type “2” to enter the menu “Select source packages”. The
list of available and installed packages appears (shown in figure 1.1). You can select (and
deselect) packages by entering the number and typing “b” to build the package, “k” to keep
the package as it is, or “r” to remove the package (in the corresponding submenu). Finally,
press “s” to start the installation:

• GODI checks the package dependencies. Missing packages are implicitly selected for
build. Furthermore, if a package is rebuilt, all installed packages are checked whether
they are dependent on this package, and also rebuilt. The same “expansion” of the
package plan is performed for the packages scheduled for removal.

• When the dependencies had to be corrected, the package list is displayed again, and
the additionally affected packages are shown at the top of the list. In this case, type
again “s” to restart the resolution of dependencies.

• Finally, the update plan is executed: Missing software is retrieved from the Internet.
Old packages are removed. The new packages are extracted, built, and installed. These
actions are always performed automatically, without any need to gear into the running
process.

4

This means, godi_console guides you through the build and installation processes, with-
out having to enter commands. We do not discuss godi_console here in detail, as it is
equipped with self-explanatory help texts.

A note for advanced users: godi_console also features a command-line mode which is
sometimes useful to do mass updates. There is a manual page for godi_console explain-
ing this mode.

1.4 Configuring external libraries

Unfortunately, godi_console cannot build everything in an automatic way. Especially one
point requires manual intervention from time to time: External C libraries.

Of course, it is required that these external libraries are installed before GODI can make
use of them. For example, if you install the package godi-zlib it is a good idea to check
whether the underlying C library libz is already present or not (don’t forget to check that
the C header files are also installed). Especially for non-free OS like Solaris there is no stan-
dard place to install such external libraries. Some admins put them under /usr/local ,
some under /opt , and a lot of further private locations are in use, too. For Linux and BSD,
however, these libraries are often part of the OS, and can be found at a known place in /usr .

The good news is that GODI is very flexible regarding these locations. There are two ways
of telling GODI where to find libraries: By changing the global configuration, and by setting
package-specific parameters.

The global parameter in question is SEARCH_LIBS: For example, when libz is installed
under /opt/phantasy such that the library libz.so is located in /opt/phantasy/lib
and the C headers are in /opt/phantasy/include , one can tell GODI this place by setting

SEARCH_LIBS += /opt/phantasy

in the global configuration file <PREFIX>/etc/godi.conf . This parameter is respected
by most packages that need external libraries (but not by all, as there are other, incompatible
methods of looking up libraries, see below).

GODI already knows a number of standard locations for libraries, i.e. directories where
certain OS install libraries by default. For example, NetBSD usually installs add-on libraries
in /usr/pkg which is already part of the built-in knowledge.

You may have already noticed that there are conf-<NAME> packages for a number of ex-
ternal libraries <NAME>. For example, there is a conf-zlib package. The role of these
packages is to find and store the configuration where external libraries are expected to be
found by GODI. By default, the conf packages iterate over the directories enumerated by
SEARCH_LIBS, and look for the needed libararies in these places. Furthermore, a small test
program is tried to build, just to see whether the found libraries really work.

Sometimes the library cannot be found, or additional compiler or linker flags must be set.
The conf packages allow you to set the individual configuration parameters. Of course, the
GODI user must already know which parameter must be set to which value – in other words,

5

this is tweaking for experts. In godi_console , one can set the configuration parameters by
going to the configuration screens of the conf packages. For example, conf-zlib has two
such parameters:

GODI_ZLIB_INCDIR : The directory where the C header file zlib.h can be found

GODI_ZLIB_LIBDIR : The directory where the library file libz.so can be found

Some conf packages also allow you to set the flags for compiling and linking directly rather
than setting directories. In any case, the individual configuration parameters override the
search strategy followed by default.

Nowadays, libraries are more and more shipped with special configuration scripts. These
scripts simply output the required compiler and linker flags. When available, GODI prefers
these scripts, and sees them as a trusted source whose knowledge can be expected to be right.
For example, the freetype library has such a script, freetype-config , and one can call it
by “freetype-config --cflags ” to get the compiler flags, and by “freetype-config
--libs ” to get the linker flags. The corresponding GODI configuration package is conf-freetype2 .
Instead of searching the library directly, it just looks for where this configuration script is
installed. Normally, the locations in SEARCH_LIBSare checked (by looking into the bin
subdirectories), and the directories in PATHare checked. If the script cannot be found, it is
still possible to set the location directly with a configuration parameter:

GODI_FREETYPE2_CONFIG: The absolute path to the freetype-config script

When such a script is used, the configuration package does not support to specify the direc-
tories of the library directly, or to set the flags.

As pointed out, the output of the configuration scripts is simply trusted. If it happens that
the obtained flags do not work, the script is wrong, and it is not possible to use the library
from GODI.

Many OS now use the ELF file format for libraries (e.g. Linux, BSD, Solaris). ELF allows sev-
eral ways of finding libraries at runtime, i.e. when the program using the library is started:

• The LD_LIBRARY_PATHvariable may list directories where libraries are installed

• There is the RPATH(runtime path) entry in the executable using the library

• There is often a global configuration file (e.g. ld.so.conf for Linux) listing the de-
fault library directories of the OS

For a number of reasons, GODI never uses the LD_LIBRARY_PATHfeature. This variable
is more an ad-hoc solution to get misconfigured libraries working, but not the appropriate
means for a permanent and professional environment like GODI.

GODI uses one of the other two options: First, it is checked whether the library can be found
by keeping the default settings, and only if this does not work, the RPATHfeature is enabled.
Note that this automatism is not applied when a configuration script is used; in this case it

6

is expected that this script already knows which way is the right one to find the library at
runtime.

Important note: Currently, this approach is not put through at all places. This means that there are
usually more RPATH settings than needed. This is rarely problematic, but I already had the case that
a certain library is available in two versions, and the RPATH setting was wrong. In particular, this
library was libGL.so, and one version (in /usr/lib) was the MESA software 3D rendering version, and
the other version (in /usr/X11R6/lib) was the hardware 3D rendering version. Because of implemen-
tation errors, stub libraries were installed with RPATHs for /usr/lib (which is totally useless), and
my programs suddenly loaded the GL library for software rendering. The workaround in such cases
is to byte-compile with -custom (or to use the ocamlopt compiler), and to fix the RPATH with -cclib
-Wl,-R/preferred/path. This GODI problem will not be fixed soon.

1.5 Using libraries from base packages

Usually, GODI does not include add-on C libraries; it is expected that these are already
available by the OS, or that the sysadmin have already installed them. Sometimes, however,
GODI needs certain versions of the libraries, and it would be painful to require that the
sysadmin updates the OS or other parts of the system only to make GODI happy. In these
cases, GODI includes the libraries to install in the “base” series of packages, e.g. base-pcre
includes the preferred version of the PCRE library.

These packages are not used by default, however. It is first checked whether the library
version provided by the OS or the version found somewhere on the system is acceptable.
If not, the conf package fails, but prints a hint that enabling the base package would be a
simple solution for the problem. By setting a configuration parameter, the GODI user can do
this. For example, the conf-pcre package can be made using the base-pcre package by
setting

GODI_BASEPKG_PCRE=yes

The rest is again fully automatic.

7

Chapter 2

Using GODI

In this chapter, I would like to give some hints for O’Caml beginners, and explain where to
find what in the GODI environment.

2.1 Starting the O’Caml toploop

The O’Caml bytecode compiler can be called as a so-called toploop: The user can enter decla-
rations and expressions, and these are immediately compiled to bytecode, and immediately
executed. The toploop is very handy to for coding attempts, and also a debugging aid for
larger programs (because one can load already compiled bytecode into the toploop, too).
One can invoke the toploop with the command ocaml :

$ ocaml
Objective Caml version 3.08.1
#

For example, define the faculty function as (note the ;; at the end of the line, the semicolons
indicate the end of the user input):

let rec fac n = if n <= 1 then 1 else n * fac(n-1);;

The toploop answers with:

val fac : int -> int = <fun>

This means that fac is a function taking integers as input, and returning integers as results.
Call the function as

fac 10;;

8

and you get the result 3628800. Of course, we cannot give here an introduction into the
O’Caml language, so we stop here. It is recommended to install the package godi-ocaml-manual
which includes both introductory and reference documentation of the O’Caml language. The
installed manual can be found in the directory <PREFIX>/doc/godi-ocaml-manual .

You may have noticed that the toploop does not include a line editor. To get around this
limitation, install the package apps-ledit , and call the toploop by

$ ledit ocaml

This enables a number of keys (cursor keys, delete key, etc.).

2.2 A simple IDE: ocamlbrowser

The O’Caml core distribution includes a simple IDE that allows you to explore libraries, to
edit O’Caml sources, and to run the toploop: ocamlbrowser. As this program uses the Tk
library for the GUI operations, it is not installed by the GODI bootstrap procedure (so it is
not necessary to deal with the complications of finding external libraries already at this early
stage). ocamlbrowser is contained in the godi-ocaml-labltk package.

The program ocamlbrowser is invoked without argument, and pops up a new window
with three columns. In the leftmost column, the modules of the standard library are listed.
If you click at a module, the middle column shows the definitions of the module. The right-
most column is only used when nested modules occur (e.g. MoreLabels.Set).

If you click at a definition (v=value, t=type, cn=exception, m=module, ...) the contents of
the definition are shown below the three columns. You can also view the interface and the
implementation files, if available, by pressing the buttons “Intf” and “Impl”, respectively.

The toploop is invoked with the menu entry “File → Shell...”. It works like the ordinary
toploop but also does syntax highlighting.

The editor is invoked with the menu entry “File → Editor...”. It performs syntax highlight-
ing, and you can even typecheck your definitions (“Compiler → Typecheck”). As a special
feature, you can query the types of subexpressions after a typecheck pass: Just put the cursor
near the interesting symbol, or mark the expression, and press the right mouse key.

By selecting “Edit → To shell”, the current definition (or the marked region) is copied over
to the shell window (if open).

Although ocamlbrowser has some interesting features, it is still too limited in order to be
useable as a developement environment.

2.3 Using emacs/xemacs

GODI does currently not include packages with the required emacs Lisp definitions.

9

2.4 The O’Caml compilers and tools

The O’Caml core distribution includes:

• ocaml : The toploop (see above)

• ocamlc : The bytecode compiler, available for all platforms. For example, to compile
the file sample.ml to the program sample , call it as
ocamlc -o sample sample.ml

• ocamlopt : The native code compiler, available for some platforms. The command-
line options are almost the same as for ocamlc .

• ocamlc.opt and ocamlopt.opt : These are versions of ocamlc and ocamlopt that
are compiled with the native code compiler, and are much faster than ocamlc and
ocamlopt . The function is exactly the same.

• ocamlcp and ocamlprof : The bytecode compiler with profiling instrumentation, and
the corresponding analysis tool

• ocamlmktop : A special version of the bytecode compiler to create toploops with cus-
tom functionality

• ocamldep : The dependency generator

• ocamllex(.opt) and ocamlyacc : Lexer and parser generators

• ocamldebug : The replay debugger

• ocamlmklib : A tool to create stub libraries

• ocamlrun : The bytecode interpreter. There is normally no need to call it directly.

• camlp4 , camlp4o (.opt), camlp4r (.opt), mkcamlp4 , ocpp : The configurable pre-
processor

• ocamldoc : The documentation generator

These tools are all described in the O’Caml manual. The native-code compiler is not available
for all platforms, as well as the .opt versions of the tools.

The GODI version of ocamlmklib is a wrapper script around the real ocamlmklib.bin
tool that adds a number of default options that should be present in a GODI environment.

In addition to these official tools, a number of less official tools are also installed:

• addlabels and scrapelabels : These tools rewrite O’Caml programs from the old,
unlabeled style to the new, labeled style, and vice versa.

• objinfo : Outputs valuable information about bytecode files (cmo and cma), for ex-
ample which module versions must be loaded as prerequisites

• dumpapprox : Outputs valuable information about native-code files (cmx), for in-
stance whether a function is enabled for inlining.

10

2.5 Using add-on libraries with findlib/ocamlfind

Unfortunately, the O’Caml core distribution does not include aids to manage libraries. These
are handled in a rather low-level way, as the user of the libraries must know the directories
where these are installed, and the dependencies between the libraries. This style is similar
to the way libraries are handled in the C language.

The findlib library (and the command-line frontend ocamlfind) try to bridge the gap be-
tween the users’ needs and this way of treating libraries. GODI equips all libraries with the
necessary meta information findlib needs to process the libraries, and to make them avail-
able in a user-friendlier manner.

In the toploop, findlib can be enabled by the directive

#use “topfind”;;

This installs a number of additional toploop directives:

• #require “<LIBNAME>” : Loads the library <LIBNAME> into the toploop (unless it
is already loaded), including all required prerequisites

• #list: Lists the available libraries

• #camlp4o : Enables the camlp4 preprocessor with standard syntax. This should be the
first directive after loading topfind.

• #camlp4r : Enables the camlp4 preprocessor with revised syntax. This should be the
first directive after loading topfind.

For example, a single

#require “pxp”;;

loads the XML parser PXP into the toploop, including all predecessor libraries PXP is depen-
dent on.

Unfortunately, some platforms cannot load libraries into the toploop that depend on external
C libraries. For example, Cygwin and NetBSD are such platforms. The workaround is to
create a custom toploop that statically links the needed libraries. For example, to create a
custom toploop with support for PXP, run the command

$ ocamlfind ocamlmktop -o mytop -package pxp,findlib -linkpkg

which creates a toploop program called mytop which can be used instead of ocaml . Note
that findlib must always be mentioned as package. The toploop mytop has already built-in
support for findlib, so you need not to “#use ” findlib at the beginning of every session. The
“#require ” directive for PXP is still necessary, however.

In order to call the standalone compilers ocamlc and ocamlopt, the tool ocamlfind should
be used. This is a wrapper program around the compilers that adds a number of additional
command-line options. For example, to compile the module sample.ml that calls functions
of PXP, use

11

$ ocamlfind ocamlc -c sample.ml -package pxp

When linking executables, the option -linkpkg must be passed to indicate that the libraries
must be linked, too:

$ ocamlfind ocamlc -o sample sample.cmo -package pxp -linkpkg

The tool ocamlfind can also be used as wrapper for ocamlcp , ocamlopt , ocamlmktop ,
ocamldep , ocamldoc , and ocamlbrowser. The latter is very convenient to browse the
interfaces of add-on libraries, e.g. to view the definitions of PXP, run

$ ocamlfind ocamlbrowser -package pxp-engine

(Note that we refer to pxp-engine , and not pxp , as the latter is only an empty pseudo
package, and the ocamlbrowser call does not resolve dependencies.)

A special feature of findlib is that it simplifies the usage of camlp4 enormously, the grammar-
level preprocessor for O’Caml. In order to enable camlp4, pass the -syntax option:

$ ocamlfind ocamlc ... -syntax camlp4o

This enables camlp4 with standard syntax. Replace camlp4r for camlp4o to get the re-
vised syntax. The interesting feature of ocamlfind is that one can easily specify camlp4
extensions. For example, to get the xstrp4 extension, just use

$ ocamlfind ocamlc ... -syntax camlp4o -package xstrp4

i.e. add such extensions simply to the list of included packages.

The findlib library is available as GODI package godi-findlib . It is installed as part of
the bootstrap procedure. There is, however, a small but useful option that is not enabled by
default, and requires a recompilation of findlib: The Makefile wizard. This is a GUI to create
findlib-aware Makefiles with a few clicks.

To get it: Start godi_console , select the godi-findlib package, and enter the configu-
ration menu. Set the parameter

GODI_FINDLIB_TOOLBOX = yes

and rebuild findlib. You will also need godi-ocaml-labltk (and thus tcl/tk) in order
to build this special version of findlib (which is the reason why this option is disabled by
default). The result is that the “Makefile wizard” is included in the findlib package. Call the
wizard with

$ ocamlfind findlib/make_wizard

12

There would be a lot more to say about findlib. As part of the package, the findlib manual is
also installed, so please look there for more information.

A final note on the syntax “-I +pkgname” the O’Caml compilers implement themselves. It
was introduced as simple mechanism to locate add-on libraries. For GODI, this kind of
referring to libraries should be regarded as deprecated legacy mechanism. The point is that
this syntax is much less flexible than findlib, and that it is also dictates the directory where
the library must be installed (which is not acceptable).

2.6 Finding package documentation

The documentation for package P can be found in <PREFIX>/doc/P . The preferred format
is HTML.

There is also a small CGI that can display library interfaces: godi-findlib-browser . It
can be found in <PREFIX>/doc/cgi-bin/browser.cgi after installation. One can easily
view all interfaces (but w/o formatting), and there is also a full-text search option. In order
to activate this CGI, you need a properly configured web server. For Apache, the widely
used web server, it is usually sufficient to include the directives

ScriptAlias /godi-bin <PREFIX>/doc/cgi-bin
<directory <PREFIX>/doc/cgi-bin>
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all
</directory>

into the configuration file httpd.conf , and to restart the web server. The CGI becomes
visible under the URL http://servername/godi-bin/browser.cgi . There are also
other ways of configuring Apache for this purpose.

2.7 Key packages

Some packages play a special role in the package system:

• The O’Caml core distribution is the union of the packages:
godi-ocaml : Compilers and runtime environment
godi-ocaml-src : Sources of the core distribution
godi-ocaml-dbm : NDBM access (module Dbm)
godi-ocaml-graphics : Simple graphics (module Graphics)
godi-ocaml-labltk : GUIs with Tk

This means that the O’Caml source tarball, as it can be obtained from the INRIA FTP
server, is split up into five packages. The reason is that external libraries are needed

13

for some parts of the O’Caml core, and this can be easier handled when packaged
separately. In addition to this, there is also the O’Caml manual:
godi-ocaml-manual

You can select all of these packages by
godi-ocaml-all
which exists for convenience only (meta package).

The package godi-ocaml-src is very special, because it contains the already config-
ured but not yet compiled source tree of O’Caml. It is the logical predecessor of the
other O’Caml core packages, which all extract and build parts of this tree. The idea of
this package is also to support patching the O’Caml compiler. There is one disadvan-
tage of this construction: In order to force a rebuild of the whole O’Caml system when
newer sources are available, one must select both godi-ocaml and godi-ocaml-src .
If only the former were rebuild, the old, wrong sources would be taken, and if only the
latter were rebuild, only the sources would be updated without compiling them.

• The software GODI consists of is itself packaged:
godi-core-digest : Helper program to compute file digests
godi-core-ftp : Helper program to download files from the Internet
godi-core-make : The BSD “make” utility
godi-core-pax : Archive tools (tar, pax) with special features for the package system
godi-core-pkgtools : The utilitites to add and delete binary packages
godi-core-mk : The build framework (a set of “make” rules) to compile and install
packages from sources
godi-tools : The higher-level tools, currently only godi_console

Note that some of these packages have a special status, as they are part of the GODI
system, and not every operation is permitted. For example, it is not allowed to delete
godi-core-pkgtools , because there would not be any way to recover from the re-
sulting situation. Furthermore, you will notice that godi_console lists some of them
under the section “Installed packages not available as source code”. This only means
that there are no newer sources to update them. Actually, the bootstrap tarball contains
the source code these packages were intially built from.

• GODIVA is an associated project to simplify the creation of GODI packages. In order
to create GODI packages with GODIVA, you need apps-godiva . It is not needed to
process the generated packages, though.

• As already pointed out, findlib is supported by all libraries in GODI, and thus godi-findlib
is also a key package.

14

Chapter 3

The Architecture of GODI

In this chapter, we look at the various parts of GODI, and how they are related. It should
become clearer how GODI works, and what one can expect from it.

3.1 GODI servers and clients

In principle, GODI is a kind of client/server system. This aspect is usually overlooked,
although it is one of the most important properties. The GODI system, as it was installed
in chapter 1, consists only of the client part that controls the locally installed packages. In
addition to this, there is also a GODI server that provides the necessary information which
packages exist and what the packages contain. The GODI client (e.g. godi_console) may
contact the server to update the list of packages. In godi_console you can trigger this by
selecting the menu item “Update the list of available packages”.

The GODI server is mainly a Subversion repository where the files are stored that make up
the various packages. This repository is maintained by the GODI developers in a collabora-
tive effort. You can view this repository under the URL:

https://gps.dynxs.de/svn

The godi-build directory contains the packages, whereas godi-bootstrap contains the
base software including the bootstrap script (from which it derives its name). (The other
directories contain software not related to GODI, although some of the libraries are available
as GODI packages.)

More precisely, the godi-build directory on the GODI server only provides the build in-
structions, i.e. the set of rules that control the build and installation procedures. The GODI
server does not store the distribution files, i.e. the tarballs made and distributed by the
authors of the software packages. These are downloaded from the primary http or ftp
servers. (To be even more exact, the GODI server keeps copies of the distribution files, but
these are only used when the primary servers are not reachable.) For example, the package
godi-ocamlnet in version 0.98 has the following build instructions and distribution files:

• http://www.ocaml-programming.de/godi-build/3.08/godi-ocamlnet-0.98.build.tgz is
the URL where the build instructions can be obtained. These are created by the GODI
developers. This tarball contains the files:

15

DESCR: Just a text file with a description of the package

distinfo : Contains checksum for distribution files

Makefile : The rules to build and install the package

PLIST.godi : The package list, i.e. it is described which files are part of the package

• http://aleron.dl.sourceforge.net/sourceforge/ocamlnet/ocamlnet-0.98.tar.gz is the URL
where the single distribution file can be obtained. This is the file distributed by the au-
thor of the software.

The build instructions also contain dependency information. For this reason, it is nec-
essary that the build instructions of all packages must be available, and because of this,
godi_console updates them in a single step. The distribution files, on the contrary, are
only downloaded when the corresponding package is built.

3.2 Local directory layout

The GODI directory hierarchy follows Unix conventions with some additions:

• <PREFIX>/bin : Binaries

• <PREFIX>/sbin : Binaries for GODI administration

• <PREFIX>/etc : Configuration files. Especially, you find here godi.conf , the global
configuration file for GODI, and ld.conf , the global configuration file for dynamic
stub libraries

• <PREFIX>/man : Manual pages

• <PREFIX>/share : Platform-independent files (in subdirectories)

• <PREFIX>/lib : C libraries and, in subdirectories, platform-dependent files

• <PREFIX>/lib/godi : Generated configuration files

• <PREFIX>/lib/ocaml/std-lib : O’Caml standard library

• <PREFIX>/lib/ocaml/compiler-lib : Additional O’Caml interface files

• <PREFIX>/lib/ocaml/pkg-lib : Add-on O’Caml libraries

• <PREFIX>/lib/ocaml/site-lib : User-installed (non-packaged) add-on O’Caml
libraries

• <PREFIX>/build : GODI build system

• <PREFIX>/build/buildfiles : Contains the build.tgz files with the build instruc-
tions (for archive purposes only)

• <PREFIX>/build/distfiles : Contains distribution files

16

• <PREFIX>/build/packages : Contains binaray packages (in All)

• <PREFIX>/build/mk : Global GODI build rules

• <PREFIX>/build/<CATEGORY>/<PACKAGE> : These directories contain the unpacked
build.tgz files

3.3 Packages

We already said that a package is a group of files that is installed as a whole. This is a
simplified definition, and when one looks in detail at the package concept, it becomes clear
that the same package may occur in three ways:

• As “source package”: The build instructions plus the distribution files may be viewed
as source packages. It is important to remember, however, that there is no single file
bundle containing the files to build the software (like SRPMs). The concept is rather
that the package metainformation are obtained from the GODI server in the form of
the mentioned build instructions, and that the raw sources of the software are directly
retrieved from the original file servers where the software authors distribute them (the
distribution files).

• As installed package: These are the installed files. GODI remembers which files belong
to which packages, and stores these data in the package database which can be usually
found at <PREFIX>/db .

• As binary package: This is an archive file containing the files to install (together with a
subset of the metainformation). These archive files can be found under <PREFIX>/build/packages/All ,
and they are automatically created when a package is built from sources.

The metainformation includes:

• The package name: The name is derived from the original name under which the
author distributes the software. GODI prefixes this name with a category indicator
(“base”, “conf”, “apps”, “godi”):

base: This is software outside of GODI’s scope, but required for GODI. Often, the
base software is part of the OS. In the case it is not available, or only in the
wrong version, the “base” packages may be used as replacement.

conf: The configuration packages represent the knowledge about software out-
side of GODI that is used by GODI. For example, the configuration pack-
ages for external libraries remember where these libraries are located, and
how these must be linked to programs created with GODI. The source pack-
age usually only consists of build instructions, but not of distribution files.
The instructions often includes a script that systematically guesses facts
about the external software to configure, and checks these assumptions
by tests (autoconfiguration). See also section 1.4 for an explanation from

17

the user’s point of view. The result of the script is usually stored in a file,
and this file is the only content of the installed/binary package. For exam-
ple, the package conf-zlib remembers the configuration parameters in
<PREFIX>/lib/godi/conf-zlib.mk . See the section 6.1 for a detailed
discussion.

apps: These are applications (end-user software).
godi: This is software to build applications, i.e. libraries, meta-programming

(generators, compilers, ...), and development tools.
Sometimes, software falling into the “godi” category has also parts that
could be seen as applications. In such cases, “godi” is preferred over “apps”.
Libraries sometimes also have a runtime part, and this means they are
needed to run the applications. In the O’Caml world, this does not hap-
pen very often, because most libraries are statically linked. Nevertheless,
it might be necessary to create another category for run-time files, but this
makes only sense when the run-time part of libraries is separated from the
build-time part.

• The version of the package: The version string has two parts. The first part is the
“dotted” sequence of decimal numbers one usually associates with a version string.
It is the version the author of the software announces (but see below). The second
part is the package revision number. Sometimes the first attempt of the package has
errors, and to distinguish improved versions of the package from the previous ones,
the revision number is incremented. The revision number is a natural number. In
the version string, the revision number is separated from the primary version by the
keyword “godi”. For example, in “1.2godi2”, the primary version, as announced by
the author, is “1.2”, and the GODI revision number is 2. When the “godi” suffix is
missing, the revision number is 0 by definition. Sometimes, the character “#” is used
as separator instead of “godi”, but this is only an abbreviation and does not have any
meaning.

Usually, the primary version number consists of natural numbers separated by dots.
The syntax of the version numbers allows a few further elements. GODI restricts the
syntax because it must always be possible to compare two version numbers, and to
decide which one must be sorted before the other (linear ordering). Of course, this can
only be ensured when it is known how the version numbers are constructed.

In addition to the dotted decimals, one can also include letters. These are compared
lexicographically, e.g. “1.1ab” < “1.1ac”. One can also use the characters “+” and “_”
as separators, but they have lower weight than the dot, e.g. “foo3.07+1” < “foo3.07.1”.
There are a few further keywords: “test”, “alpha”, “beta”, “pre”, “rc”, “pl” which are
also recognised as separators. The first five of these have the special property that they
decrease the weight, for example “1.1test1” < “1.1”. The separator “test” decreases the
most, the separator “rc” (release candidate) decreases the least. For instance, “1.1test1”
< “1.1beta1”. The separator “pl” (patch level) has again positive weight, but less than
all other separators. Other characters than the mentioned ones are not allowed in ver-
sion strings.

Of course, the authors of software do not always use versioning schemes that are com-
patible with the one GODI applies. In this case, the packager should try to port the

18

original version numbers as closely as possible to the GODI scheme. It is essential,
however, that the order of the numbers is correctly represented, otherwise it might
happen that a newer version of the software is available, but GODI does not recognise
that. An example illustrates that: Some authors make both development snapshots
and regular releases available. For the former, date strings are used, e.g. foo-20040921.
For the latter, classic dotted numbers are used, e.g. foo-3.2. GODI can process both for-
mats, and the sorting order for each format is properly represented. It is not possible,
however, to mix both formats. Because “20040921” is just a big number, it is higher
than “3.2”, even if it was released before “3.2”. The moral of the story: Use either date
strings, or dotted numbers, but do not alternate between them.

A final clarification about the revision numbers: They distinguish between several edi-
tions of the source packages. They do not distinguish between different versions of
binary packages that are made from the same sources and the same build instructions,
but with a different equipment of predecessor packages. For example, if foo-4.4 is once
built with bar-1 and once built with bar-2 as predecessors, the same version string (and
thus the same file name) will be used for both binary packages that result from the
build. (Maybe we will have a mechanism to handle this some day.)

• Source: The package has fields that describe where the distribution files can be down-
loaded, and where more information can be obtained.

• Description: The package has a short, one-line description (“comment”), and a longer
description that may even consist of several paragraphs.

• Dependencies: The package may require that other packages are already installed.
This is called a package dependency. There are two kinds of dependencies (for the mo-
ment, further types are discussed in godi-list): Build dependencies demand that the
predecessor packages must be installed at build time, and strict (runtime) dependen-
cies express the requirement that the predecessor packages must be installed both at
build and at run time.

Furthermore, dependencies are handled differently for source packages, and for in-
stalled/binary packages. One difference is clear: For the latter type of package, there
are no build dependencies, because they are already built. The other differences have
to do with the handling of the transitivity of the dependency relation, and the meaning
of version conditions.

For source packages, it is not necessary to state indirect predecessors. For example,
if foo requires bar, and bar requires baz, GODI concludes that foo also requires baz
indirectly. GODI finds this out automatically. In contrast to this, installed and binary
packages must list all predecessors explicitly, even indirect ones, so bar has to demand
baz. Fortunately, GODI users never have to resolve such dependencies, as this is done
internally by GODI, so this detail users rarely see. (The transitive closure is taken for
several reasons. During compilation of software it may happen that indirect prede-
cessors influence the current build. The cross-module inlining feature of O’Caml is
an example for this. Of course, such effects must be represented by the dependency
relation. Furthermore, the closure eases the distribution of binary packages.)

Dependencies may carry a version condition, for example foo may require bar in ver-
sion ≥ 3.2. For source packages, these conditions are just handled as constraints. For

19

installed and binary packages, however, these conditions are transformed into exact
version requirements. For example, if the user happens to have version 3.3 of bar in-
stalled, this is acceptable when foo is built, because 3.3 ≥ 3.2. The resulting binary
package lists the dependency bar == 3.3, i.e. the actually found version is taken as
fixed version. The reason for this is that O’Caml libraries (and most dependencies are
about libraries) are very sensitive to changes, and it is unlikely that any other version
works than the one found at build time.

• Maintainer: The person who is responsible for maintaining the package as part of
GODI.

3.4 Libraries

As already pointed out, the O’Caml libraries always support findlib in the GODI system.
This is not a very hard requirement, and it is usually simple to even add such support to
libraries where the author does not do this. Findlib bases only on a few concepts, and com-
plicated situations cannot arise.

The key ideas are that libraries are stored in known directories (directory convention), and
that there is a file with metainformation about libraries (called “META”). The directory con-
vention is as follows (here shown in the way GODI realises it):

• <PREFIX>/lib/ocaml/pkg-lib/<NAME> : This directory contains all code files for
the library <NAME>, except DLLs. By “code files” we mean compiled interfaces (suf-
fix cmi), compiled modules (suffixes cmo, cmx, o), and library archives (suffixes cma,
cmxa, a). It is also a good idea to put the source interfaces here (suffix mli), for better
documentation.

Files of other kind can go elsewhere, e.g. into <PREFIX>/lib/<NAME> , this is out of
the scope of findlib.

The code directory must not have subdirectories.

• <PREFIX>/lib/ocaml/pkg-lib/stublibs: This directory contains the DLLs for
all findlib libraries that are installed below pkg-lib . The DLLs are simple to recog-
nise, because their name begins with the prefix “dll”, and has an OS-dependent suffix
(e.g. “.so” for Linux, “.dylib” for MacOS, etc.). Findlib also puts for every DLL a sec-
ond file into this directory, with the suffix “.owner”, e.g. “dllfoo.so.owner” for the DLL
“dllfoo.so”. This file indicates to which library the DLL belongs (the name is stored in
the file).

This stublibs directory is already configured in ld.conf , the DLL configuration file
of O’Caml, so one need not to care about this detail.

If the OS does not support DLLs, the directory remains empty.

• <PREFIX>/lib/ocaml/site-lib/<NAME> : This is another directory for the library
<NAME>. In the site-lib hierarchy user additions are stored, whereas the pkg-lib hierar-
chy is reserved for libraries installed by GODI packages.

20

By a trick it is achieved that the command “ocamlfind install ...” automatically in-
stalls the library into site-lib when it is executed outside of a GODI build, but into
pkg-lib when executed within a GODI build. So the libraries automatically end in
site-lib when GODI users build and install libraries manually.

• <PREFIX>/lib/ocaml/site-lib/stublibs : The DLL directory for libraries in
the site-lib hierarchy.

Of course, it is possible that the same library is installed under both pkg-lib and site-lib .
In this case, site-lib has precedence. Anyway, it is a bad idea to do so, because this may
break GODI’s build system. In general, it is ok to have libraries in site-lib that depend
on libraries in pkg-lib , but not vice versa.

In addition to the directory convention, findlib manages libraries also by storing metainfor-
mation about the libraries. These are put into files with the name META, and the METAfiles
are contained in the code directories of the libraries. METAhas usually only a few lines, e.g.

description = “The library foo”
version = “1.0”
archive(byte) = “foo.cma”
archive(native) = “foo.cmxa”

and is seldom more complicated.

Findlib can also express dependencies (library X depends on library Y = library X uses fea-
tures of Y). This mechanism is different from the GODI package dependencies, and there is
no strict need that the dependencies of findlib and GODI correspond to each other, although
this is usually the case for obvious reasons.

O’Caml libraries linked with external C libraries are a special case. In principal, there is an
O’Caml part, and a C part. As shown in section 1.4, it is required that the GODI user can
configure where the C library is located. The configuration data are contained in the config-
uration package conf-foo for the external C library foo . The whole story is as follows:

• The O’Caml library (e.g. foo.cma) is linked with a small stub library (e.g. libfoo_stubs),
which is also written in C, and whose purpose is to translate the O’Caml conventions
for data and function representation into the C conventions, and vice versa.

• The stub library is linked with the external C library.

The O’Caml library and the stub library are part of the GODI package godi-foo . The
location of the external C library is specified by conf-foo . It is now possible that the C
library is located outside of GODI, or that the C library is available as GODI package, too.
In the latter case, the package is called base-foo , and it is required that the C library is
installed in the directory <PREFIX>/lib .

Note that although the information where the external C library resides is specified in conf-foo ,
these locations are also entered into the O’Caml library as part of the build process, so that

21

they are also available in godi-foo . At runtime, conf-foo is no longer needed. Further-
more, if the user wants to change the configuration, it is not only required to build conf-foo
again, but also godi-foo , and GODI does not remind you of that.

Some platforms allow that C libraries are dynamically loaded into the running bytecode in-
terpreter, but in general this cannot be assumed. Of course, the C libraries must be available
as DLLs (or DSOs in Unix terms) in order to be dynamically loadable. When the platform
does not support this technique, however, there is no advantage to have C libraries in DLL
form, as O’Caml links statically anyway.

Linking with C libraries is really complicated, and there are a number of details that must
be handled differently for the various platforms. It is currently not clear which facts about
linking are important for GODI users, and which are really technical details only experts
need to know.

22

Chapter 4

Managing a GODI Installation

4.1 What can be done with godi_console

The following tasks can be easily carried out with the help of godi_console:

• Updating the source packages: godi_console retrieves a new package list from the
GODI server, and gets the updated build instructions for all packages with a newer
version string.

Instructions:

1. Select: Main menu→ Update the list of available packages

2. Wait until the system responds with a success message

3. Press “x” to exit from the dialogue

• Building additional packages from source: By selecting a package for build, godi_console
downloads the distribution files, compiles and installs the package. Furthermore, a bi-
nary package is created.

If necessary, godi_console also builds predecessor packages automatically, for both
build and strict dependencies.

Instructions:

1. Select: Main menu→ Select source packages

2. Scroll up/down by pressing “p” and “n” (or use PageUp/PageDown keys). Fi-
nally enter the number of the package to build, and press Enter

3. The detailed description of the package appears. Press “b” to select it for build.
Press “x” to exit from the dialogue

4. It may happen that now the configuration dialogue appears. In this case, you can
set configuration parameters by entering their number, and changing their value.
If done, press again “x”

5. The package list is again shown. Press “s” to start the installation process.

23

6. It may happen that further (predecessor) packages are also selected for build, and
the package list is only updated to reflect this. Press again “s” in this case.

7. GODI now asks whether it is ok to start the installation. Press “o” to confirm this,
or “x” to cancel.

8. The installation process begins and runs fully automatic. (Actually, there is one
exception from the latter: When godi_console updates itself, the user must con-
firm this step, because it is very critical.)

9. When the installation process prints a success message, it is done. Press “x” to
exit.

• Updating packages by rebuilding them from source: By selecting an already installed
package for build, godi_console performs all necessary steps to upgrade the pack-
age to the new version. First, the old version of the package is removed, and then, the
new distribution files are downloaded, built, and installed.

The dependencies are checked in two directions: Missing predecessor packages are
installed. This can happen when the new version requires additional prerequisites.
Furthermore, the successor packages are also handled in a special way, because the
strict successors are updated, too, or at least rebuilt if no newer version is available.

Instructions: Updating packages works like building packages for the first time.

• Removing installed packages: By selecting an installed package for removal, godi_console
deletes the package and all strict successors from the system.

Instructions:

1. Select: Main menu→ Select source packages

2. Scroll up/down by pressing “p” and “n” (or use PageUp/PageDown keys). Fi-
nally enter the number of the package to remove, and press Enter

3. The detailed description of the package appears. Press “r” to select it for removal.
Press “x” to exit from the dialogue

4. The package list is again shown. Press “s” to start the installation process.

5. It may happen that further (successor) packages are also selected for removal, and
the package list is only updated to reflect this. Press again “s” in this case.

6. GODI now asks whether it is ok to start the installation. Press “o” to confirm this,
or “x” to cancel.

7. The installation process begins and runs fully automatic.

8. When the installation process prints a success message, it is done. Press “x” to
exit.

It is recommended to check whether enough disk space is available before installing pack-
ages. One can get into problematic situations when the disk becomes full in the wrong mo-
ment, and it is difficult to recover from this. Furthermore, it is a bad idea to stop godi_console
in the wrong moment (CTRL-C) because of the same reasons. The critical step begins when
godi_console prints that it is installing a package (“===> Installing for package”), and
ends after the installation has been registered (“===> Registering installation for package”).

24

4.2 Installed packages

The command godi_info may be used to get detailed information about installed packages:

• godi_info <NAME> : Prints the comment, the description, strict dependencies (both
predecessors and successors are output), and the homepage of the software.

• godi_info -L <NAME> : Prints the files the package consists of.

Note that godi_info -F does not work (looking up the package by file name), because the
needed reverse index is not available.

The command godi_delete may be used to remove a package from a system (you can also
do this with godi_console). Give the -r option to delete the package and all successor
packages.

4.3 Binary packages

As mentioned earlier in this manual, the binary package file is put into the directory <PREFIX>/build/packages/All
after the build of a package has succeeded. This means that this directory always contains a
complete copy of the current installation plus a lot of history information.

When a package is updated to a new version, the binary package file of the old version is not
deleted. In principle, this allows you to go back, and to restore the old package. However, the
history function is limited by the fact that often package files are overwritten when a package
is rebuilt for a different equipment of predecessor packages, but for the same version of the
software. For example, consider that there is a package foo in version 1, and a package bar
in version 1. Furthermore, bar is dependent on foo. When a new version of foo is released,
e.g. version 2, and the GODI user updates the package, both packages are built again, foo in
version 2, and bar in version 1. The result is that a new binary package file is created for foo,
namely foo-2.tgz , but that the old package file for bar is overwritten, because it is still
called bar-1.tgz .

The main purpose of the binary packages is to simplify the distribution of software in LANs.
One can copy the packages from one system to another, and install them, which is a lot
simpler than to build the software on every system from source.

Tasks related to binary packages:

• Getting information: The godi_info command can also deal with package files. Just
pass the name of the file as argument, and the output of the command refers to the file
instead of the installed package. Example:

godi_info <PREFIX>/build/packages/All/godi-ocaml-3.08.1.tgz

• Installing an additional package: This is performed by godi_add . By default, it is not
allowed to overwrite the package if it is already installed. Example:

godi_add <PREFIX>/build/packages/All/godi-ocaml-3.08.1.tgz

25

You can also mention several package names on the command line to install several
packages at once. When predecessor packages are missing, they are searched in the
same directory the original package is taken from. When the predecessor packages
exist, but in the wrong version, the installation fails.

• Replacing a package: This can be done with godi_add , too, when the -u option is
given. In principle, it is not necessary to delete the successor packages first, as the
package can be in-line replaced by a different version if the version conditions of the
dependent packages permit it. However, this is normally not the case.

Predecessor packages are not updated, however, even if this first enabled the instal-
lation of the original package. godi_add is simply not intelligent enough for this
operation.

The package replacement even works if an older version is to be installed (downgrade).

• Cleaning the package directory: Of course, you can delete the files in <PREFIX>/build/packages/All
when you are sure you do not need them anymore. Note that there also symlinks in
the neighbour directories that should be deleted, too.

4.4 Restoring old packages

In principle, one can restore binary packages (i.e. install the old binary package file again),
and one can recover source packages (i.e. go back to an old version of the source package,
and build it again).

4.4.1 Restoring an old binary package

In principle, you can restore an old binary package by calling godi_add -u for it:

cd <PREFIX>/build/packages/All
godi_add -u <NAME>.tgz

Sometimes this does not work, however, because the old package is not compatible with
the current set of predecessor or successor packages (godi_add reports about a conflict).
You can try to replace the problematic packages by historic versions, too, but this is a very
complex task, and it is even unclear whether it is possible at all. As explained in section 4.3,
package files may be overwritten in certain circumstances, and this means that the required
old files might be lost.

In general, it is better to build the old version of the package from source, see the next section
for instructions.

26

4.4.2 Building an old version of a package

This way of restoration is usually possible. In <PREFIX>/build/buildfiles , GODI
stores the build instructions of all package versions that were ever downloaded. In <PREFIX>/build/distfiles ,
GODI stores the distribution files of all package versions that were ever built.

Follow these steps to install the package corresponding to the build instructions in <CAT>-<NAME>-<VERSION>.build.tgz :

1. Change the directory:

cd <PREFIX>/build/<CAT>

2. Delete the current build instructions (if present):

rm -rf <NAME>

3. Extract the build.tgz archive:

godi_tar xzf ../buildfiles/<CAT>-<NAME>-<VERSION>.build.tgz

4. Start godi_console and build the package again (see above). It might happen that
the distribution files do not exist locally in the distfiles directory, because the pack-
age was never built before. In this case, godi_console tries to download them from
the Internet. There is no guarantee, however, that historic distribution files remain
available forever.

Of course, godi_console may want to rebuild other packages, too. This is just the same
mechanism as building new packages. It may happen, however, that the already in-
stalled packages are too modern for the installed package. This is not detected by
GODI in advance because the information is not available. The most likely symptom
is that the build fails with a compiler error.

In order to keep this possibility, it is strongly discouraged to delete the files in the buildfiles
and distfiles directories.

4.5 Distribution upgrades

There are usually several “release lines” of GODI, i.e. several completely independent series
of packages. When you perform the bootstrap procedure, one of the release lines is automat-
ically selected and installed (there is always one release line reflecting the most up-to-date
state). Up to now, the following types of release lines are in use:

• For every major version of the O’Caml compiler a new release line is started. For
example, there are releases for the O’Caml 3.07 and the O’Caml 3.08 systems. Minor
updates (bug fixes) of the compiler are usually handled within the existing release line,
e.g. the 3.07 compiler was updated to 3.07pl2 after a while in the existing 3.07 line.

The reason for this is that the version of the O’Caml compiler is a major determinant
of all software covered by GODI. Often, software must be explicitly ported to a new
O’Caml compiler release, because the new version introduces almost always incom-
patibilities with the previous version.

27

• For certain development purposes, special release lines are started. These are often
experimental, and include features that are not yet ready for the stable GODI system.

Currently, the existing release lines of the first type are “3.07” and “3.08”. The release lines
of the second type are announced in godi-list.

The release line GODI uses is determined by the variable GODI_SECTIONthat can be set in
the file <PREFIX>/etc/godi.conf . After changing this variable, please note that GODI
does not really detect that a different distribution is selected, it just retrieves the package
from the newly selected release. This means:

• If the new release has packages with newer versions, these are recognised as being
new, and the build instructions are downloaded when the package list is updated.

• If the new release has packages with older versions, these are recognised as being older
than the available ones, and the build instructions of the new release are ignored.

The consequence is that the change of the release line works only correctly when this implies
an upgrade, i.e. the packages of the new release are newer. If you really want to change to
an older release, you must first delete all extracted build instructions:

cd <PREFIX>/build
rm -rf apps/* base/* conf/* godi/*

After that, at least the build instructions of the older release are downloaded, and you can
start to build packages. You might still encounter strange effects, though, because package
downgrades are a somewhat hairy operation, as necessary information about compatibility
between old and new packages are missing.

28

Chapter 5

Packaging Software

This chapter explains the core method of packaging software. GODIVA is another method
with a simpler package specification file. GODIVA processes this file, and generates build
instructions according to the core method, so GODIVA should be regarded as a higher layer
that works on top of the core layer.

The question is whether to use GODIVA, or to manually apply the core method. There is no
simple answer, but the following criterions may help:

• GODIVA requires that the software to be packaged follows certain rules, e.g. that there
are certain “make” targets, that $PREFIX is honoured, etc. Normally, the build scripts
coming with a software distribution do not match exactly with the requirements (al-
though they come quite close). If you package your own software, this is not a big
problem, just change the build scripts such that the GODIVA requirements are ful-
filled. If you package third-party software, it may become necessary to apply patches
such that GODIVA and the build scripts play nicely together.

• GODIVA does not support configuration options.

• GODIVA does not support the inclusion of library flags from conf-* packages. This
makes it a bad choice for software that provides bindings for C libraries.

Some of the limitations can be worked around by patching the result of the generated build
instructions, however.

If you think you may want to try GODIVA, just install the apps-godiva package, and read
more on the homepage: http://projects.phauna.org/godiva/. The following information
may be still of interest, however.

5.1 The build directory

The build instructions for a package are stored in the build directory:

<PREFIX>/build/<CAT>/<CAT>-<NAME>

29

You find here the following files and directories:

• Makefile (mandatory): This Makefile controls the overall build process. It does
not directly invoke compilers, but it calls the Makefile of the software to build as sub
process. This Makefile has a certain structure, see below.

• distinfo (mandatory): This file contains checksums of the distribution files, and of
patches.

• DESCR(mandatory): The long description of the package. Free ASCII text.

• BUILDMSG(optional): This message describes configuration options. Free ASCII text.

• MESSAGE(optional): A message to be displayed when the package is finally installed
(e.g. from a binary archive). Free ASCII text.

• PLIST or PLIST.godi (mandatory): The file describes which files are installed by the
package, and are owned by the package. The name “PLIST.godi” should no longer be
used. PLIST can include a number of directives, and is explained below in detail.

• CONFOPTS(optional): The list of configuration options (just one option per line).

• patches (optional): This directory contains patches to be applied to the unpacked
software before the build starts. Patches are automatically applied by the build frame-
work. Note, however, that patches are only applied when they also occur in distinfo,
otherwise an error is indicated.

• files (optional): Additional files to be added to the software. There is no automatism,
the commands performing the addition must be programmed in Makefile .

Usually, one needs only Makefile , DESCR, and PLIST (distinfo is generated, see below).

There may be the directory work as well. It contains the unpacked software, and this is the
place where the build process really happens. By deleting work , one can reset the build
process to the beginning. Note that it is possible to configure a different place for work (e.g.
somewhere in /tmp).

5.2 Stages

The build process is structured into several stages. A certain stage can only be reached from
the immediately preceding stage (but there is some shortcut logic, see below). The stages
are:

• fetch: This stage ensures that the distribution files are in <PREFIX>/build/distfiles. If
not, the files are downloaded.

• extract: Unpacks the distribution files into work .

• patch: Applies the patches to work

30

• configure: Configures the software (usually by calling a configure script)

• build: Compiles the software

• install: Installs the software

• package: Creates the binary package from the installed image

Normally, the build process just “climbs” the stages one after the other. The build process re-
members the already reached stages by placing invisible files into “work”, e.g. “work/.install_done”
indicates that build has completed the install stage.

When developing a package, it is possible to go to a certain stage, and to check whether
everything has been done right (in godi_console, the stages are simply iterated, and does not
have the chance to stop and to check what is going on). This is done by calling godi_make ,
and passing the name of the stage, e.g.

godi_make configure

continues the build process until at least the configure stage is reached.

There are defined actions that are carried out for every stage. These actions can be configured
by setting variables in Makefile (explained below). In addition to this, one can define pre and
post actions for every stage by adding rules to Makefile, e.g.

pre-configure:
<commands>

causes that these commands are executed before the predefined actions of the configure
stage. In the same way, a post-configure rule would be executed after the predefined
actions of the configure stage.

5.3 The Makefile

The minimum Makefile looks as follows:

.include "../../mk/bsd.prefs.mk"
VERSION= ...
PKGNAME= ...-${VERSION}
PKGREVISION= ...
DISTNAME=...
DISTFILES=....tar.gz
CATEGORIES=...
MASTER_SITES= ...
MAINTAINER=...
HOMEPAGE=...
COMMENT=...

.include "../../mk/bsd.pkg.mk"

31

Of course, this is only rarely enough, but often only a few additions are needed. We will
discuss possible additions below. The “.include” directives are mandatory, and load the rest
of the build framework. The variables have this meaning:

• VERSION: This is the version string of the package, without revision suffix (“godi” plus
revision number)

• PKGNAME: The package name, including the version string at the end (as defined by
VERSION).

• PKGREVISION: The revision number. This is a natural number ≥ 0. If omitted, the
revision number is assumed to be 0 which is the same as not specifying a number.

• DISTNAME: The name of the directory below work into which the distribution files are
unpacked, i.e. the name of the topmost directory of the distribution tarball. This is
usually the name of the package, optionally including the version string. If omitted,
DISTNAMEis tried to be derived from DISTFILES .

• DISTFILES : The names of the distribution files. This can be any number of files
(even zero); the names are separated by spaces. These files are downloaded from
MASTER_SITES, stored into the distfiles directory, and finally unpacked in work .

• CATEGORIES: This should be the category prefix of PKGNAME, i.e. apps, conf, godi, or
base. In the future it will be possible to assign a package to several categories, and the
categorization will be visible in the user interface.

• MASTER_SITES: A list of URLs where the DISTFILES can be downloaded. The URLs
are tried in turn, so you can mention mirror sites in addition to the primary site. The
URLs must end with a slash (or more precisely, with the separator character to which
the file name can be appended). Currently, only “http” and “ftp” URLs are allowed.
There is special support for common download sites like Sourceforge, e.g. one can
define
MASTER_SITES=${MASTER_SITE_SOURCEFORGE:=path/}
where path is the part to append to the master URL. (This strange syntax is needed
because MASTER_SITE_SOURCEFORGEexpands to a list of URLs!)

The GODI backup URL is implicitly added to MASTER_SITES, and when neither of
the URLs work, the GODI backup server is tried in a final attempt.

• MAINTAINER: The name of the package maintainer, including email address

• HOMEPAGE: The homepage of the packaged software

• COMMENT: The short, one-line description of the package

With only these variables, the stage actions are defined as follows:

• fetch: The DISTFILES are downloaded from the MASTER_SITES.

• extract: The DISTFILES are unpacked into work .

32

• patch: Applies the patches to work

• configure: Does nothing, the default is that there is no configuration script

• build: Changes to the subdirectory of work containing the unpacked sources, and tries
to build the target “all”

• install: Changes to the subdirectory of work containing the unpacked sources, and
tries to build the target “install”

• package: Creates the binary package from the installed image

We will now discuss how to define a number of frequent variations of this default. As most
configurations can be done by setting further variables, the reference document of the vari-
ables is quite important. This is makevar-ref.txt (XXX where installed).

5.3.1 Customising the “extract” stage

There are not really many ways for this type of customisation. If only some DISTFILES
need to be unpacked, one can set

• EXTRACT_ONLY: Enumerates the file names to extract. This should be a subset of
DISTFILES .

5.3.2 Customising the “patch” stage

Patches need not to be declared in Makefile (only in distfiles). The patches must be put into
the patches directory. Usually, the file names of patches have the convention

patch- <letter><letter>- <info>

where the two letters define the order in which the patches are applied. The info suffix is
just a descriptive string, e.g. one can mention the patched file (if it is only one file).

Patches are applied relative to the toplevel directory of the unpacked sources. The patch
format should be “unified” patches. It is not allowed that files are created or deleted by
patching; in the first case one must copy the files from the files directory to the source
tree, and in the latter case one must delete the files by a script.

How to create patches

In this example we create a patch for the file foo.txt which is part of the bar-3.14 pack-
age.

1. Copy the original version of the file:
cd work/bar-3.14
cp foo.txt foo.txt.orig

33

2. Modify foo.txt as required

3. Create the diff file (current directory is still work/bar-3.14):
diff -au foo.txt.orig foo.txt >../../patches/patch-aa-foo.txt

If the file to patch is located in a subdirectory, do not change to this subdirectory! Create the
difference always from the toplevel directory of the unpacked sources.

Finally, you should also update distfiles , see below how to do this.

5.3.3 Customising the “configure” stage

As mentioned, the default is not to configure the software. The following variables enable
this:

• HAS_CONFIGURE=yes: Enables to call a configuration script.

• CONFIGURE_SCRIPT: The name of the script to call. This defaults to “configure”.

• CONFIGURE_ARGS: The arguments to be passed to the script. By default empty. Note
that the arguments are in shell syntax, i.e. separated by spaces, and if necessary,
quoted. E.g.

CONFIGURE_ARGS=”word1 word2” word3

passes two arguments to the script where the first one is composed of two words.

If you just want to pass Makefile variables, the “Q” modifier is useful. It quotes auto-
matically, e.g.

CONFIGURE_ARGS=-prefix ${LOCALBASE:Q}

so LOCALBASEis here always an argument of its own.

As with many other “plural” variables that have a list of arguments as values, it is
common to use the “+=” operator to add arguments, e.g.

CONFIGURE_ARGS+=-prefix ${LOCALBASE:Q}
CONFIGURE_ARGS+=-with-foo

This operator appends the new value to the already existing list, and ensures that there
is a space character as separator.

• CONFIGURE_ENV: Environment variables to be passed to the script. A number of vari-
ables are already passed by default (see reference). The syntax is simply:

CONFIGURE_ENV+=var=value

where var is the name of the variable, and value the new value.

• CONFIGURE_DIRS: Lists the directories where to invoke the configure script. By de-
fault, this is only done in the toplevel directory of the source tree.

34

5.3.4 Customising the “build” stage

One can set a number of variables, and there are also some typical “code snippets”.

• USE_GMAKE=yes: Effects that GNU make is used to build the software. By default,
godi_make is used (which is a BSD-type make utility).

• MAKEFILE: The name of the invoked Makefile of the source tree. Defaults to “Make-
file”.

• ALL_TARGET: The target(s) to pass to “make” to build the software. Defaults to “all”.
See below for a discussion.

• MAKE_FLAGS: Further arguments to pass to “make”. Especially, it is possible to over-
ride variables of the invoked Makefile by passing “name=value” arguments. The ar-
guments are again in shell syntax.

Pitfall: There is also a variable MAKEFLAGS, without underscore. This variable has a
different meaning, as it is used to pass flags to recursive invocations of godi_make.
Don’t touch it!

• MAKE_ENV: Environment variables to be passed to “make”. A number of variables are
already passed by default (see reference). The syntax is simply:

MAKE_ENV+=var=value

where var is the name of the variable, and value the new value.

• BUILD_DIRS : Lists the directories where “make” is invoked to build the software.
By default, it is only invoked in the toplevel directory of the source tree. By setting
this variable to the empty string, the default action for the “build” stage is completely
disabled.

Often, O’Caml software must be built with “make all” to get the bytecode version, and
“make opt” compiles to the native code version (if supported). This is usually expressed
by this code snippet

.if ${GODI_HAVE_OCAMLOPT} == "yes"
ALL_TARGET= all opt
.else
ALL_TARGET= all
.endif

(or some variation). The variable GODI_HAVE_OCAMLOPTexpands to yes when the ocam-
lopt compiler is available, and to no otherwise. (Note that there are some more variables
that describe the properties of the O’Caml core, see the variable reference.)

When findlib is used by the software, a special configuration must be enforced. This config-
uration sets a different lookup path for libraries such that the GODI-managed libraries have
precedence. To get it, put this line into Makefile:

35

MAKE_ENV+= ${BUILD_OCAMLFIND_ENV}

If forgotten, it may happen that the build fails because a required library is not found, or in
the wrong version.

5.3.5 Customising the “install” stage

Many of the “build” variables are also applied in the “install” stage, namely USE_GMAKE,
MAKEFILE, MAKE_FLAGS, MAKE_ENV. The following variables are specific for “install”:

• INSTALL_TARGET: The target(s) to pass to “make” to install the software. Defaults to
“install”.

• INSTALL_DIRS : Lists the directories where “make” is invoked to install the software.
By default, it is invoked in the same directories as for the “build” stage. By setting
this variable to the empty string, the default action for the “install” stage is completely
disabled.

It is quite common to add post-install actions to Makefile, because often documentation
files are not installed by the installation procedure defined by the packaged software. An
example for such an action is:

post-install:
${MKDIR} ${PREFIX}/doc/godi-getopt
${CP} ${WRKSRC}/README ${WRKSRC}/COPYING \

${PREFIX}/doc/godi-getopt

There are a number of further variables here:

• PREFIX: This is the base directory where packages are installed. The variable LOCALBASE
has usually the same value, but for a number of reasons PREFIX should be preferred
when files are installed, and LOCALBASEshould be preferred when files are looked up
(owned by other packages that are already installed)

• WRKSRC: This is the toplevel directory of the source tree, as absolute path.

• MKDIR, CP: These are defined commands. Of course, one could also directly call mkdir
and cp , but there are systems where there several versions of various commands (e.g.
a BSD version and a System V version), and the GODI framework has selected one that
can be called through the mentioned variables.

36

5.3.6 Dependencies

In Makefile one can also declare dependencies on other packages. The variables are:

• DEPENDS: Lists strict dependencies for build and runtime

• BUILD_DEPENDS: Lists build-time-only dependencies

The syntax for the expressions one can use in these variables:

• <BASENAME> <OPERATOR> <VERSION> : <PATH>

where <BASENAME> is the name of the package without version string, <OPERATOR> is
one of ==, >=, <=, >, <, != , and <VERSION> is the version string the operator refers to. Note
that package revisions in <VERSION> (i.e. any “godi” suffixes) are ignored, and one cannot
enforce a certain revision.

The <PATH> is (almost) a legacy component of the dependency expressions, i.e. it is ignored
by godi_console, but there are still some scripts that need it. The <PATH> must be set to

../../ <CATEGORY>/ <BASENAME>

where <CATEGORY> is the category prefix of <BASENAME> (apps, godi, etc.). The <PATH>
is the relative path where to find the build directory of the package one refers to.

Examples for package dependencies:

• DEPENDS+=godi-ocaml>=3.07:../../godi/godi-ocaml

• BUILD_DEPENDS+=conf-zlib>=0:../../conf/conf-zlib

The comparison “>=0” should be read as “any version is accepted”. There is also the legacy
syntax “-*” or even “-[0-9]*” for the same purpose, e.g. “conf-zlib-*”, but it should no longer
be used in new packages.

Selecting the kind of dependency

BUILD_DEPENDSshould only be used when it can be ensured that the referred package
is only needed at build time, and in all other cases DEPENDSmust be used. Examples when
build-time dependencies are sufficient:

• A generator or other build-time tool is required, and the other package includes it. For
instance, godi-findlib is usually a build-time dependency because of this rule.

• The other package configures the build. All conf-* packages can be referred to by build-
time dependencies.

37

• An application program is built, and all executables are either created with ocamlc
-custom , or ocamlopt . In this case, the used libraries are not necessary at runtime,
and the corresponding packages can be listed in BUILD_DEPENDS.

Note, however, that there are exceptions from this rule. For example, godi-ocamlnet
also includes runtime files that are required even when the application is completely
statically linked.

In general, when a library is linked into a program, or a library is the antecedent for another
library, the dependency is of the runtime type.

Magic dependencies

There are dependencies that need normally not to be listed, because it is impossible to even
start the build process without a certain minimum equipment. These dependencies include:

• godi-tools: This is the package including godi_console.

• godi-core-mk: This package contains the build framework.

One can, however, demand certain minimum versions for these packages. This is sometimes
useful when one needs a special feature that was only recently introduced into the packaging
system.

5.3.7 Legacy expressions

In the past, it was necessary to put a number of expressions into Makefile to get a certain
behaviour, but due to improvements this is no longer required:

• GODI_PLIST : When set to “yes”, the file PLIST.godi is used instead of PLIST

• .include “../../mk/godi.pkg.mk” : This is now an empty file

• PATH:=${LOCALBASE}/bin:${PATH} : This is now always done

If you find that in existing packages, don’t copy it to new packages.

5.4 Packing lists

The file PLIST describes the installed files, so GODI knows which files are owned by the
package, and the files are removed when the package is deleted.

In general, the “install” stage must already have arranged that the files are installed in the
right directories. Often, this is done by passing PREFIX to the configure script, but there is no
general technique how this can be achieved. In doubt, read the documentation coming with

38

the software, and, of course, the Makefiles and other build scripts included in the software
distribution.

The PLIST file is needed first when the “install” stage is entered. Before this stage, the PLIST
file can be omitted.

If you don’t know the software you are packaging, it is sometimes difficult to find out which
files are actually installed. As mentioned, the PLIST file is needed before the installation is
done (at the beginning of the “install” stage), so you cannot just install and see what has
been installed. See below for a discussion how to cope with this problem.

In the simplest form, PLIST just lists the files that have been installed, plus includes a number
of directives how to deal with directories. For example:

bin/foo

This one-liner means that the package consists only of the executable bin/foo . Filenames
are relative to the installation prefix of GODI, and it is an error to use absolute path names.

Because bin is a shared directory, no special handling of it is required.

For private directories, however, one should add @dirrm directives to PLIST. For example,
this package installs files into lib/foo , and because this directory is considered to be the
private property of the package, it must be removed when the package is deleted. This is
achieved by the @dirrm directive:

lib/foo/bar.txt
lib/foo/baz.a
@dirrm lib/foo

As lib is again shared, it is not necessary to add another @dirrm directive for it. These
directives should come after the files contained in the directories, and when private directo-
ries occur within private directories, the @dirrm directives must be in the order such that
the inner directory comes first. (As you guess it, at package deletion time the PLIST is just
interpreted line by line from top to bottom, and the removal actions are performed in this
order.)

Note that the handling of directories is going to be changed. In the future, it will no longer be necessary
to add @dirrm statements to PLIST. In a development version of godi_console, this revised handling
is already implemented, but it will take some time to release it.

As it is quite error-prone to enumerate files, there are a number of abbreviations and special
notations. We explain here only the most useful ones, for a complete reference see plist-ref.txt
(XXX where installed?).

• @deepdir <dir>: The mentioned directory and its contents (including subdirectories)
are declared to be owned by the package.

• @findlib <name>: The named findlib library is declared to be owned by the package.
When the library includes DLLs, these are ignored, however.

39

• @dllfindlib <name>: The named findlib library and the included DLLs are de-
clared to be owned by the package. (Note: The ownership of the DLLs is only recog-
nised when there are .owner files. This is the case when the library was installed with
ocamlfind, but is usually not the case when another method was used.)

• @optional <directive>: The files covered by the <directive> are only installed in cer-
tain configurations, and may be missing in other configurations. E.g. @optional
@findlib <name> means that the library is only optionally installed. (Note: Cur-
rently, @optional is broken when <directive> is a plain file. Use @glob instead,
without glob metacharacter.)

In most cases, these four directives are sufficient.

There is still the problem how to figure out which files are installed. A simple method:

1. Begin with an empty PLIST, and do godi_make install

2. Get the installed files by calling godi_make print-installed . Note, however,
that there is no guarantee that this list is complete, the “print-installed” script checks
the timestamps of all files in the GODI installation. This may go wrong, especially on
systems where the “find” command does not support the comparison of the ctime field
of the timestamp (which is less problematic than the mtime field).

3. Write the PLIST according to the output of “print-installed”. One should keep in mind
that some files are only installed for certain system configurations, so just copying the
list may not be enough.

4. Now remove the package, and the files (so the package database is clean again):
godi_delete <packagename>
godi_make print-installed | (cd <PREFIX>; xargs rm -f)

5. Remove these files, and install the package again:
rm work/.install_done work/.PLIST

5.5 An Example

Here the Makefile of godi-xstr (slightly updated):

.include "../../mk/bsd.prefs.mk"
VERSION= 0.2.1
PKGNAME= godi-xstr-${VERSION}
DISTNAME= xstr
DISTFILES= xstr-${VERSION}.tar.gz
CATEGORIES= godi
MASTER_SITES= http://ocaml-programming.de/packages/
MAINTAINER= gerd@gerd-stolpmann.de

40

HOMEPAGE= http://ocaml-programming.de
COMMENT= additional string functions

DEPENDS+= godi-ocaml>=3.06:../../godi/godi-ocaml
BUILD_DEPENDS+= godi-findlib>=0.8.1:../../godi/godi-findlib

MAKE_ENV+= ${BUILD_OCAMLFIND_ENV}

USE_GMAKE= yes

ALL_TARGET= all
.if ${GODI_HAVE_OCAMLOPT} == "yes"
ALL_TARGET+= opt
.endif

post-install:
${MKDIR} ${LOCALBASE}/doc/godi-xstr

. for F in README LICENSE
${CP} ${WRKSRC}/${F} ${LOCALBASE}/doc/godi-xstr

. endfor

.include "../../mk/bsd.pkg.mk"

The corresponding PLIST file:

@findlib xstr
doc/godi-xstr/README
doc/godi-xstr/LICENSE
@dirrm doc/godi-xstr

5.6 Further targets for godi_make

The following targets have relevance:

• clean: Deletes the “work” directory, and resets the build process to a clean, initial state.

• print-installed: Prints a list of files that have been installed (created or modified) since
the last time the package was unpacked. The underlying method is not fully reliable.

• makesum: Creates the distinfo file, and puts entries for all DISTFILES into it.

• makepatchsum: Adds checksums for patches to an already existing distinfo file.

5.7 Testing packages

One of the basic properties every package must have is that one can delete it. So the most
primitive test checks this:

1. Install the package with godi_make install

41

2. Delete the package with godi_delete , check that there are no error messages.

3. Check that godi_make print-installed does not output anything!

5.8 The package repository

The package repository is realised with Subversion. Everybody can check it out:

svn checkout https://gps.dynxs.de/svn/godi-build

Of course, you need an account to modify any of the files. If you had one, you could do the
following:

• Copy your new package into the checked-out directory hierarchy. Normally, the right
directory is godi-build/trunk plus the relative path of the package directory.

• Add the package to the repository: “svn add” calls, and commit it: “svn commit”.

• Ask other developers to check the package out, and to test it

• Release the package: Add the right line to godi-build/pack/release.<SECTION>.map,
invoke the web application called “Release Tool”, and do the release.

I have prepared more detailed instructions how to perform these actions for everybody who
wants to have an account on the GODI server.

5.9 Check list

• Can the package be cleanly deleted?

• Does the package also work for other types of systems than your own one? Not every
system supports DLLs, for example. Not every system has the ocamlopt compiler.

• Are all dependencies declared?

• Are the descriptions in DESCR, and optionally BUILDMSG up to date?

• Is the documentation installed? As bare minimum, there should be a file clarifying the
license conditions.

• Are the examples installed? These are part of the documentation.

• Are all references to external C libraries covered by conf packages? There should also
be conf packages for other unusual equipment that is not part of GODI.

(to be extended...)

42

Chapter 6

External Dependencies

The autoconf nightmare.

6.1 Configuration packages

6.2 The policy for libary lookup

6.3 Using godi_script to create configuration packages

43

