
WDialog

Web Path: WDialog

1 WDialog - Toolkit for Dialog-Centric Web Applications

WDialog is an advanced system to create dialog-centric web applications. It focuses on user interfaces with many input
elements that need strict control of the possible user interactions (e.g. editors for structured data, form centers, workflows).
The key features can be summarized as follows:

• The definition of the user interface (UI) is strictly separated from the backend program (model) carrying out the
actions triggered by the user. The UI is described in an XML file that can be developed independently of the
backend program. This improves the software engineering process, as developers for the UI part and the backend
part can concentrate on their own skills, and need not to be experts for the other part. The developers are encouraged
to adopt a modular programming style even for the UI part. Last but not least, the UI part can be re-designed and
localized without having to understand the rest of the application.

• The XML document type for the UI part provides a rich language that specifies the dialog structure of the user
interface, and the persistence properties of the dialogs. It further includes integrated HTML form elements, and
a macro/template calculus. The nature of thisUI languageallows it to develop a prototype of the user interface
that is mature enough for early presentations although the backend is not yet available (rapid prototyping). Session
persistency is defined on the level of the UI language, so dialog variables do not forget their state even in the
early development stages. The UI language determines the possible ways the user can take through the application
(storyboard). Although it has been tries to make the UI language a powerful input/output processor, some features
are intentionally not available. It is not possible to develop real algorithms in the UI language, and external stores
(databases) are not directly accessible.

• The interactive parts of the dialogs are modeled like classic GUI widget sets, i.e. the HTML interactors can be used
like widgets visualizing the current state of the dialogs, and user clicks are considered as events that can be handled
by configurable callback methods.

• The callbacks are programmed in a real programming language (Objective Caml, or Perl). The callbacks usually
implement the algorithmic part of the application, and have access to all system resources.

• There are several runtime environments for the final application: It can be run as CGI program, but also as dedicated
application server to improve the performance.

• The WDialog toolkit itself does not require any database system as background store, and provides several high
performance alternatives.

• As security issues become more and more important in these days, it should be mentioned that WDialog includes
features that gives the security of web applications a solid and trustworthy basis. Error-prone tasks such as handling
escape encodings, parameter passing, and implementing persistency are taken away from the application developer,
and are realized in a sound way by the WDialog toolkit. Furthermore, the framework nature of WDialog enforces a
certain structure of the application, and keeps developers away from adventurous designs.

These are only the highlights of the WDialog feature list, making it a somewhat different web toolkit. This manual gives
an introduction to WDialog explaining its innovative concepts for newcomers. The reference part describes every little
piece of the toolkit in detail.

1



Introduction

Web Path: WDialog / Introduction

2 Introduction

The following pages have been written to explain what WDialog really is. The problem is that I cannot refer to well-
established standards, as the WDialog approach is new, and non-trivial to understand. There is also no striking example
one only has to study to get the point. Many of the features can only be explained by experience, as there are often shorter
ways to achieve similar effects, but I have learned that these do not scale well, or have other disadvantages.

The chapter about thearchitecture(→ 3) is crucial. First it explains a number of constraints every web platform must
deal with, independent of the implemented technology. Second, it explains the target model WDialog wishes to realize.
This target model is taken from the world of GUI programming where user interfaces are built by combining widgets,
and by programming callbacks (which in turn bases on the model-view-controller approach of Smalltalk). The problem
is that the constraints of the web protocols are basically incompatible with the GUI model. Nevertheless, there is a way
to emulate many aspects of the GUI model, and this path is taken by WDialog.

The chapter aboutdialogs and pages(→ 9) introduces into fundamental concepts of WDialog by explaining code snippets.
It gives a first impression what you can really express in the user interface (UI) language. The following chapter gives a
completeexample(→ 12) of a very simple web application.

I think examples are the way to study WDialog, and because of this a realistic application has been written: WTimer. This
is a groupware application allowing the users to edit time sheets, and to generate reports from them. It is complete, and
ready to be used in production environments. See the chapter entitled "More examples(→ 20)" for links to this example.

2



Architecture

Web Path: WDialog / Introduction / Architecture

3 Architecture

WDialog provides a programming model taken from object-oriented GUI programming, and adopts this model to HTTP-
based Web applications. In the following paragraphs, I try to explain the WDialog model, the similiarities to the GUI
model, and the differences to other Web application concepts.

3.1 From the GUI model to WDialog

Picture 1 outlines some architectural aspects of traditional graphical user interfaces. Usually, there is a window object (or
several objects) for every displayed window. The window object is the base object for programming, and implementing
a certain window behaviour means to override methods of the object. The window system manages it to connect the
window object to a real input/output device (i.e. an area of the screen, mouse, keyboard). User input (keystrokes, moving
the mouse etc.) is translated into a stream of events sent to the window object. Conversely, the window object can send
display requests to the window system.

The window object and the real window exist as long as the session remains open. It is important to mention that there is
a session, as this is one of the problems with Web-based applications.

The window object stores internally some state. The state reflects both the current step in the dialogue with the user as
well as the data the window displays.

Picture 2 shows the architectural constraints of HTTP-based applications. The browser and the HTTP server communicate
via HTTP, and the server finds the right Web application (which is usually a separate program) and invokes it. There is no
normative protocol for the invocation of the Web application, but the most popular is certainly CGI.

The requests (HTTP or application) play a similar role as the events in the GUI model; they normally indicate user
interaction. In the same manner, the responses can be compared with the display requests. However, there are some
fundamental differences between both models which makes it difficult to simulate the GUI model on top of an HTTP
architecture.

In contrast to the GUI architecture discussed above, there are no sessions. The HTTP protocol isolates consecutive
request/response cycles from each other. The protocol does not give any hint whether several such cycles belong to the
same logical series of interactions, or whether they are unrelated.

Furthermore, there must always be a response for every request in HTTP. The response normally replaces the previous
response, it is not possible to transfer only the parts of the page that have changed (for example, to add some rows to an
HTML table). The response is a function of the request, and only of this single request. This is different from the GUI
model that tries to only exchange delta information between the window object and the window system.

The strict request/response scheme means that the Web application works like a function that processes the request and
produces the response. The application protocol connecting the Web application with the HTTP server reflects the func-
tional behaviour. If CGI is used as application protocol, every invocation of the Web application is perfomed in a separate
process such that the operating system already guarantees that invocations do not interfer.

The idea of WDialog is to simulate aspects of the GUI model in the HTTP architecture. Picture 3 illustrates this: The
WDialog library (linked as part of the application) creates the illusion of a window object communicating with an applica-
tion window. The window object receives events if the user presses buttons or clicks at hyperlinks, and the window object
sends display requests to the application window. Of course, the illusion is not perfect, and there are many restrictions

3



WDialog Manual WDialog / Introduction / Architecture

Picture 1: The GUI programming
model

Window

object

events

display requests

Picture 2: HTTP-based applica-
tions

Browser

HTTP
server

Web

App response

App request

HTTP response

HTTP request

application

4



WDialog Manual WDialog / Introduction / Architecture

compared with the GUI model.

In reality, the application window is an ordinary browser window displaying HTML pages. The HTML code is mixed
from two sources: On the one hand, the application programmer designs the visual layout of the page, and writes an
algorithm that creates the necessary HTML elements implementing the desired look. On the other hand, some of the
HTML code is generated by WDialog because it is needed to simulate the GUI model. In order to mix the elements from
the two sources accordingly and in a predictable manner, WDialog evaluates a special code block calledUser Interface
(UI) Definition. This is an XML file containing normal HTML elements for the visual layout, and special "ui" elements
that are going to be replaced by simulation code during page processing. For example, the page

<html>
<body>

<ui:form>
This page has a <ui:button name="b" label="button"/>.

</ui:form>
</body>

</html>

contains the special elementsui:form and ui:button. ui:form establishes the simulation environment needed for
ui:button, as it is transformed into a HTMLFORM element with additional parameters referring to the current state of
the simulation.ui:button is transformed into a HTMLINPUT element that is able to send a "button press" event to the
application in a way that can be uniquely decoded by WDialog. The overall effect is that the application has the illusion
that the browser understands all theui elements, or in other words, that the browser provides an application window that
can be programmed in the GUI style.

The window object is modeled using the object-oriented features of the underlying programming language; however there
is one important difference to the corresponding objects in the GUI model. The window object exists as object of the
programming language only from time to time, especially in the moment the response is computed from the request. As
already pointed out, the response must be a function of the request, and because of this, it is not possible that the object
persists between two consecutive request/response cycles, for example in a background store. However, the objectmust
be persistent, and the solution is that the object is serialized (as a stream of bytes) and transferred within the request and
response messages. Every time the application receives a request, the WDialog input transformer deserializes the object,
and awakes it again as object of the programming language. Conversely, the output transformer serializes the object and
includes it into the outgoing response message. In HTML the so-called hidden form fields can be used to transfer such an
invisible data field in the request and response messages. Actually, these form fields are generated as part of the mentioned
ui:form transformation.

The effect of this serialization technique is that the object seems to be persistent. However, the illusion is far away from
being perfect; the instance variables of the object need to be declared in a special way such that the WDialog library
knows which variables make up the object. If the application code uses other instance variables, these are lost between
consecutive cycles.

Of course, the simulation cannot break with the strict nature of the request/response cycles, i.e. that every HTTP request
must be followed by a complete response. However, the WDialog library implements several techniques making life
easier. For example, the application needs not to analyze requests; the WDialog library already does it, and the results are
automatically stored in the window object. Requests are handled as if they were events, and the WDialog library extracts
button events, hyperlink events and so on from the arriving request messages. Mutable interactors like text input boxes
must be tied to instance variables of the window object. This means that the contents of the interactors are initialized
from the current value of the corresponding instance variable, and that user changes of the contents are automatically
propagated back to the variable.

The composition of response messages is simplified by the user interface (UI) definition language. As already pointed
out, the application can (and must) use the abstractui elements hiding implementation details of the simulation. These
ui elements are part of the UI language among others (all have theui prefix). For example, the HTML code is grouped

5



WDialog Manual WDialog / Introduction / Architecture

into so-called pages. A page can be seen as an output method of the window object, and it generates the whole HTML
document that is displayed in the browser window. It is possible to have severalui:page sections, and this can be used to
provide different visualizations of the same state. The following XML file shows a complete UI document; the application
reads such a file in order to get the declarations of the objects and to get the definitions of the pages:

<?xml version="1.0"?>
<!DOCTYPE ui:application PUBLIC "-//NPC//DTD WDIALOG 2.1//EN" "">

<ui:application>
<ui:dialog name="sampledialog">

<ui:variable name="v1"/>
<ui:variable name="v2"/>

<ui:page name="order12">
<html>

<body>
<h1>Variables in order 1, 2:</h1>
v1: <ui:dynamic variable="v1"/>
v2: <ui:dynamic variable="v2"/>

</body>
</html>

</ui:page>

<ui:page name="order21">
<html>

<body>
<h1>Variables in order 2, 1:</h1>
v2: <ui:dynamic variable="v2"/>
v1: <ui:dynamic variable="v1"/>

</body>
</html>

</ui:page>
</ui:dialog>

</ui:application>

This file defines one dialog (window) objectsampledialog containing two instance variablesv1 andv2 (these are string
variables by default). (In the rest of this manual, the termdialog objectis preferred overwindow object. This stresses
the role of dialogs as the link spanning the individual page invocations. It is the series of interactions that counts, not
the single web page.) There are two pages:order12 visualizes the dialog object by first displayingv1 followed byv2,
andorder21 shows the variables in the reverse order. When the application wants to send the response message to the
browser, it simply selects one of the defined pages of the object, and delegates the details of sending the message to the
WDialog library. (This is done by the already mentioned output transformer.)

3.2 The components of a WDialog application and how they interact

The application consists of the following major components:

• The application program written in a programming language

• The WDialog library

6



WDialog Manual WDialog / Introduction / Architecture

• The UI definition

At startup, the application invokes the initialization function of the WDialog library which loads the UI document. By
default it is assumed that the application is connected via CGI to the HTTP server, and the library is set up for this
environment. However, it is possible to integrate the application into other environments1.

The next step of the application is to connect classes of the program with the dialogs occurring in the UI document.
Besides pages, the UI document declares only the instance variables of the dialog objects, but not methods for other
purposes. The WDialog library has a registry associating classes of the program with dialogs of the UI definition. After
the registration has been performed, the WDialog library is able to deserialize arriving dialog objects and to represent
them as ordinary objects of the program. Furthermore, the library can now invoke methods on the objects; there are two
methods with predefined meaning:prepare_page andhandle (see below). Last but not least it becomes possible to
serialize the dialog object again.

The application calls now theprocess_request function of WDialog doing all the rest. The result of this function is the
response message that is sent to the HTTP server. See the illustration in picture 4.

process_request first analyzes the request. The current object is deserialized, and in the following, the other information
included in the request are stored into the object: The event is extracted from the request, and all changes to user-
modifiable interactors are processed (normally by setting the corresponding instance variables of the object).

The next step is that the methodhandle of the current object is invoked. This method is fully customizable as it is
implemented as ordinary object method; its task is to react on the last event. For example, if the application allows users
to enter data records, one possible event (button) is "Store this record". An implementor ofhandle would get the entered
record (from the instance variables), and put these data into a database.

Thehandle method must also determine what has to happen next; we still need a response. One possibility is to select
one of the pages (output methods) of the current object. Alternatively, a different object can be created, initialized, and a
page from this object can be selected (not displayed in the picture).

Once the page is known, the library could immediately output the contents of the page. However, before output starts,
the methodprepare_page is called; this method is an ordinary method of the object, too. The programmer has the
opportunity to set instance variables of the object that are needed for the visualization. For instance, if the application
allows users to query data records, theprepare_page method will perform the query on the database and write the
resulting records into instance variables of the object.

Finally, the selected page is actually transformed to HTML and sent to the HTTP server. This operation includes the
serialization of the current object.

1This can be done using the netcgi abstraction provided by the ocamlnet library on which WDialog bases.

7



WDialog Manual WDialog / Introduction / Architecture

Picture 3: The WDialog architec-
ture

HTTP
server

App response

App request

HTTP response

HTTP request

display requests

events

Virtual
window
object

WDialog

library

Application

Browser
window
Application

Picture 4: Steps of the pro-
cess_request function

Outgoing response Arriving request

curobj.set_event(extractevent(request))

curobj = deserialize(request)

for every interactor <name> with <value>:
curobj.set_variable(name, value)(curobj, page) =

curobj.handle()

curobj.prepare_page(page)

 output_page(page))
(serialize(curobj),

response =

8



Dialogs and pages

Web Path: WDialog / Introduction / Dialogs and pages

4 Dialogs and pages

The user interface definition contained in the index.ui file is divided up intodialogswhich are themselves divided up into
pages.

A typical index.ui file looks as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ui:application PUBLIC "-//NPC//DTD WDIALOG 2.1//EN" "">

<ui:application start-dialog="dlg_A">

<ui:dialog name="dlg_A" start-page="page_1">
<ui:page name="page_1">...</ui:page>
<ui:page name="page_2">...</ui:page>
...

</ui:dialog>

<ui:dialog name="dlg_B" start-page="page_1">
<ui:page name="page_1">...</ui:page>
<ui:page name="page_2">...</ui:page>
...

</ui:dialog>

</ui:application>

The file format is XML-1.0 with the addition that the prefixui: is pre-bound to all tags defined by the WDialog system
(actually, this prefix is used like a namespace prefix; however a namespace declaration for ui: would not be understood
by the system); in contrast to this, tags without prefix are used for the generated HTML code. For example:

<ui:page name="page_2">
<html>

<body>
<h1>This is a HTML page!</h1>
...

</body>
</html>

</ui:page>

9



WDialog Manual WDialog / Introduction / Dialogs and pages

Here, the tag defining page_2 is part of the WDialog language, and its nameui:page has the prefix, while the contents
of page_2 are normal HTML tags lacking this prefix.

A dialog is a container for a piece of the state of the application. Dialogs begin to exist when the user of the application
visits the first page, their state is changed when the user fills out forms and presses buttons, and they vanish when the user
leaves the application. The lifecycle of a dialog is the series of interactions of one user in one session. Note that dialogs
cannot be used to save the state of the application from one session to the next session; for this purpose an appropriate
background store (i.e. database) is required, which is beyond the scope of WDialog.

A dialog has instance variables which can be individually referenced and modified. For example, an application to manage
phonebooks has dialogs describing entries of the book:

<ui:dialog name="entry" start-page="page_1">
<ui:variable name="person"/>
<ui:variable name="number"/>

<ui:page name="page_1">...</ui:page>
<ui:page name="page_2">...</ui:page>
...

</ui:dialog>

Note that variables contain strings by default; however, there are other data types which are important in the context of
dynamically generated HTML.

It is very natural that an application consists of several types of dialogs, as there are normally different views on the topic
the application manages (e.g. the application may display a list of phonebook entries, or a single entry).

Thepagesof an object define different visualizations of one dialog. This feature can be used to provide different views
on the same dialog state, or to split up the state such that every page shows only a subset of all variables.

There is an analogy between dialogs, pages, and variables and the well-known terminology of object-oriented program-
ming:

• Dialog declaration⇔ class

• Dialog instance⇔ object

• Dialog variable⇔ instance variable

• Page⇔ method

A page is like a method for the object producing HTML output. For example, we can define a page showing the contents
of an entry of a phonebook:

<ui:dialog name="entry" start-page="show">
<ui:variable name="person"/>
<ui:variable name="number"/>

<ui:page name="show">
<html>

<body>
<h1>Entry</h1>

10



WDialog Manual WDialog / Introduction / Dialogs and pages

<b>Person:</b> <ui:dynamic variable="person"/><br/>
<b>Number:</b> <ui:dynamic variable="number"/>

</body>
</html>

</ui:page>

</ui:dialog>

Here, the page "show" outputs the name of the person and the associated number. The code contains the special elements
ui:dynamic which are dynamically replaced by the current contents of the variables they are referring to2.

We can define another page,input, allowing the user to edit the current contents of the two variables:

<ui:page name="input">
<html>

<body>
<h1>Entry</h1>
<b>Person:</b> <ui:text variable="person"/><br/>
<b>Number:</b> <ui:text variable="number"/><br/>
<ui:button label="Change" name="change_entry"/>

</body>
</html>

</ui:page>

The special elementsui:text generate the HTML code for text input boxes which are initialized with the current values
of the two variables. Furthermore, the special elementui:button is transformed to HTML code for a submit button.
When the user hits this button, the default behaviour is to update the dialog variables which have been bound to input
widgets. In this example, first the contents of the variablesperson andnumber are put into the text boxes when the page
is displayed by the browser, but after the use has edited them and has pressed the button, the (possibly modified) values
of the text boxes are stored back into the variables. This is calledautomatic update of interactor variables.

This shows an important difference to other web platforms for dynamic content: Input and output are seen as a unit during
the whole transaction. It is the job of the toolkit to propagate user input to the corresponding programmable containers
(i.e. to the variables). Furthermore, the interactors can be output as HTML in a way such that the link to the container is
not lost, which makes the automatic update of variables possible.

2The default replacement algorithm treats characters such as < and & specially which would be recognized as meta characters by HTML parsers; i.e.
they are automatically converted to the sequences &lt; and &amp;, respectively.

11



An Example

Web Path: WDialog / Introduction / An Example

5 An Example

5.1 The task: Add two numbers

In this chapter I present a very simple web application, and explain it. The task is to let the user enter two numbers, and
compute the result once the button is pressed.

You can find the complete solution for this example in the source distribution of WDialog. It consists of three files:
index.cgi, index.ml, andindex.ui. This example uses Objective Caml as scripting language (compiled ad-hoc); of
course, this is not the optimal way to run a web application, but it is the best to learn WDialog as you can change the
script, and it has an immediate effect without needing to recompile the program.

The fileindex.cgi is the part that launches the Objective Caml interpreter, and is of no special interest. The fileindex.ml
is the application written in Objective Caml, andindex.ui is the UI definition file in XML syntax.

5.2 The structure of the solution

This example consists of only one dialog object. This dialog object contains the three numbers (first_number, sec-
ond_number, result), and because this triple is the only data unit we have to deal with there is no other dialog object.
This is a rule of thumb: For every part of the user interaction model that is centred around one record of data you need a
separate dialog object.

As already mentioned, the dialog object contains three numbers. This can be written as (index.ui):

<?xml version="1.0"?>

<!DOCTYPE ui:application
PUBLIC "-//NPC//DTD WDIALOG 2.1//EN" "">

<ui:application start-dialog="add-numbers">

<ui:dialog name="add-numbers" start-page="enter-numbers">

<ui:variable name="first_number"/>
<ui:variable name="second_number"/>
<ui:variable name="result"/>

<ui:page name="enter-numbers"> ... </ui:page>
<ui:page name="display-result"> ... </ui:page>
<ui:page name="display-error"> ... </ui:page>

</ui:dialog>
</ui:application>

12



WDialog Manual WDialog / Introduction / An Example

Furthermore, we have three pages, i.e. three ways to present these variables to the user:

• enter-numbers: The user can enter the numbers to add, no result is displayed

• display-result: The two entered numbers are displayed together with the sum.

• display-error: If the user does not enter a syntactically correct number, an error will be displayed.

The start page isenter-numbers, i.e. this page will be displayed when the application is visited for the first time.

The ways the three variables are referenced are quite different. In the first page, input boxes prompt the user to enter
something. WDialog allows it to bind input boxes to variables. The effect is that the boxes are prefilled with the current
value of the variable when the page is displayed (sent to the web browser), and that any modifications of the contents of
the boxes are passed back to the variables.

The pagedisplay-result simply includes the current values of the variables in the displayed HTML text.

The last pagedisplay-error is only about the contents of the variables without displaying them.

There is another aspect about the pages. The user can change from one page to another page, but of course only on prede-
fined paths. The page transitions can be described in the UI definition file, and they can be programmed by hand. The page
enter-numbers contains a button "Compute Result" normally directing the user to the second page,display-result.
However, if the syntax of the numbers is wrong, the next page will exceptionally bedisplay-error. As the first page
transition is the expected one, it is recommended to describe it in the UI definition file ("goto" attribute, see below), and
program the second possible transition manually.

There are further transitions fromdisplay-result anddisplay-error back to the start page.

In the user interface, transitions are usually represented as buttons or links. WDialog allows it to give these elements
names, and when they are pressed or clicked, events are triggered that are identified by these names.

So there are two levels: First, buttons trigger events, and second, events are processed and cause page transitions.

5.3 The details of the pages

Here is the first page,enter-numbers:

<ui:page name="enter-numbers">
<html>

<head>
<title>The Ultimative Adder</title>

</head>
<body>

<ui:form>
<h1>The Ultimative Adder</h1>

<p>Please enter the two numbers you want to add:</p>
<p>
<ui:text variable="first_number"/> +
<ui:text variable="second_number"/> =

13



WDialog Manual WDialog / Introduction / An Example

<ui:button name="add" label="Compute Result" goto="display-result"/>
</p>

</ui:form>
</body>

</html>
</ui:page>

The special WDialog text boxes that are linked with the variables are created by<ui:text variable="name"/>. They
are transformed to ordinary HTML text boxes (INPUT TYPE="TEXT") that are filled with the current values of the
variables, and if the user changes the contents of the boxes they will transferred back to the variables.

The special WDialog buttons are created by<ui:button
.../>. The buttonadd triggers the eventButton("add") when pressed, and the default action is to go to the page
display-result (by using thegoto attribute). Note that the action can be overridden by the web application.

The pagedisplay-result looks as follows:

<ui:page name="display-result">
<html>

<head>
<title>The Ultimative Adder</title>

</head>
<body>

<ui:form>
<h1>The Ultimative Adder</h1>

<p>The result is:</p>

<p>
<ui:dynamic variable="first_number"/> +
<ui:dynamic variable="second_number"/> =
<ui:dynamic variable="result"/>

</p>

<p>
<ui:button name="back" label="Go back" goto="enter-numbers"/>

</p>
</ui:form>

</body>
</html>

</ui:page>

On this page, the contents of the variables are dynamically inserted into the generated text. The special element
<ui:dynamic .../> causes the contents of the variable to be encoded correctly (by substituting meta characters like
< by their corresponding entities, here&lt;), and printed instead of the element.

Finally, the error page is:

14



WDialog Manual WDialog / Introduction / An Example

<ui:page name="display-error">
<html>

<head>
<title>The Ultimative Adder</title>

</head>
<body>

<ui:form>
<h1>The Ultimative Adder</h1>

<p>Sorry, one of your numbers is not a number. Please go
back and correct your input.</p>

<p>
<ui:button name="back" label="Go back" goto="enter-numbers"/>

</p>
</ui:form>

</body>
</html>

</ui:page>

An important detail of all three pages is that the special WDialog interactors are placed within the specialui:form
element.This is required.ui:form is transformed to an HTML FORM element containing a number of hidden fields that
help WDialog managing the interactions.

Note that you can still use the HTML form element directly, but WDialog does not provide any support for this.

5.4 The application

The other part of the web application is the CGI program that actually adds the two numbers and sets the result variable.
Because it is relatively short, we include here the wholeindex.ml file:

[01] open Wd_dialog
[02] open Wd_run_cgi
[03] open Wd_types
[04]
[05]
[06] class add_numbers universe name env =
[07] object (self)
[08] inherit dialog universe name env
[09]
[10] method prepare_page() =
[11] (* This method is empty in this example *)
[12] ()
[13]
[14] method handle() =
[15] (* Check which event has happened: *)
[16] match self # event with
[17] Button("add") ->

15



WDialog Manual WDialog / Introduction / An Example

[18] (* Get the numbers and convert them from string to int. Catch
[19] * errors.
[20] *)
[21] let n_1, n_2 =
[22] ( try
[23] let s_1 = self # string_variable "first_number" in
[24] let s_2 = self # string_variable "second_number" in
[25] (int_of_string s_1, int_of_string s_2)
[26] with
[27] error ->
[28] (* On error: Jump to the error page *)
[29] raise(Change_page "display-error")
[30] )
[31] in
[32] (* Add the numbers, and store the result into the variable *)
[33] let r = n_1 + n_2 in
[34] self # set_variable "result" (String_value (string_of_int r));
[35]
[36] | _ ->
[37] (* Do nothing if the event is not recognized *)
[38] ()
[39] end
[40] ;;
[41]
[42]
[43] run
[44] ~charset:‘Enc_utf8
[45] ~reg:(fun universe ->
[46] (* Bind the XML dialog "add-numbers" to the class "add_numbers": *)
[47] universe # register "add-numbers" (new add_numbers)
[48] )
[49] ()
[50] ;;

I have added line numbers to help readers who are not familiar with the language Objective Caml.

Lines 1-3 open the relevant modules of the WDialog library.

Lines 6-40 define the classadd_numbers that inherits from the WDialog classdialog. By inheriting from this base class
the class gets all the properties that are required to act as dialog. We will go into detail later.

The lines 43-50 are the main program. It calls the WDialog functionrun doing all the necessary steps. There are two
configuration options:~charset sets the character set that is internally used by WDialog and that will also be used
to represent the generated HTML pages. The option~reg configures the registry containing the bindings of dialogs to
classes. Here we simply bind theui:dialog calledadd-numbers to the Objective Caml class calledadd_numbers.

The instance of the option~reg must be a function that gets the so-called universe as input. The universe consists of
all defined dialogs and the corresponding classes, and acts as a factory for new dialog objects. Letu be the universe.
To create a new object for the dialog "add-numbers", you can callu # create env "add-numbers" (the symbol # is
the method invocation operator). Here,env is the environment, a record of data that are different for every invocation
of the CGI; there is normally an environment at hand when you want to create an object. - The function passed to~reg
initializes the universe by telling WDialog which dialogs correspond to which classes (this needs not to be a one-to-one
correspondence).

16



WDialog Manual WDialog / Introduction / An Example

Now back to the definition of the class. The lines 6, 7, 8, and 39 form the outer "braces" defining the class:

class add_numbers universe name env =
object (self)

inherit dialog universe name env
...

end

The symbolsuniverse, name, andenv are only passed to the super classdialog, we can ignore them now. The symbol
self is the symbolic name of the current object (also calledthis in other languages; in Caml you are free to choose your
preferred name).

As you can see, the class has two methods.prepare_page is called just before the dialog object outputs the next page
(the preprocessing phase). It is normally used to set dialog variables that are only needed for visualization, but do not
have any effect on the actions. For instance, if you wanted to display the current date at the top of the page, you could set
another dialog variabledate to the current date in this method. For this example, however,prepare_page is not needed,
so we leave it empty.

The other method,handle, is called after the user has reacted on the page (for instance, pressed a button), and it is always
called for the last object seen by the user. This method contains the post processing actions of a page.

Beforehandle is called, the WDialog processor has reconstructed the last dialog object. This is worth to be mentioned,
becausehandle is called in the CGI activation following the activation that invokedprepare_page and that actually sent
the page to the client. So it is usually called in a different Unix process. However, WDialog has managed it that the dialog
object of the last activation is reanimated so it is accessible again (by object serialization).

The necessity of object serialization is another reason why we are using the special dialog variables that can be declared
with the XML expression<ui:variable>. The values of these variables survive from one CGI activation to the next
because they are part of the serialized objects; if we just declared ordinary Caml instance variables their values would be
lost.

The body ofhandle first checks the last event. This is done using the pattern matching operator

match ... with pat1 -> expr1 | pat2 -> expr2 | ...

The expressionself#event returns a symbolic term describing the last event. Here, we are only interested in the case
when the last event isButton("add"), i.e. the user has pressed the button labeled "Compute Result". In all other cases
(the pattern_) we do nothing. These other cases include the events that the user pressed the "Go back" buttons. It is not
necessary to do something when these buttons are hit because thegoto attribute already sets an action, namely to go to
the requested page.

From lines 21 to 31 we extract the current values from the dialog variablefirst_number andsecond_number. This is
done in two steps:

let s_1 = self # string_variable "first_number" in

This line looks up the named dialog variable and binds their string contents to the symbols_1. The next line performs the
same for the other dialog variable, and definess_2. The methodstring_variable is one of the methods inherited from
the super classdialog. The strings are converted to integers (by using the functionint_of_string). Of course, this may
fail because the user did not type in a number. In this case, the Caml runtime system throws an exception which is caught
by thetry ... with... block. Normally, when the user entered a correct number, the comma in line 25 forms a pair
of the two integers, and this pair is bound to the pair pattern in line 21. The result is thatn_1 contains the first number as
integer, and thatn_2 contains the second number as integer.

17



WDialog Manual WDialog / Introduction / An Example

Line 33 adds both numbers and calls the sumr. Finally, line 34 sets the dialog variableresult to the string value that
corresponds to the integerr. Here, the methodset_variable is again one of the inherited methods.

Note that there is no statement requesting a certain page as the next page to display. We do not need that because thegoto
attribute of the button set the name of the next page, this attribute is still in effect.

Line 29 is only executed when the user did not enter valid numbers. In this case, an exception is thrown by the Caml
runtime system, and it is caught in lines 26/27. What happens is that another, new exception is raised causing that the rest
of the method definition is bypassed. Furthermore, this exceptionChange_page
"display-error" overrides the effect of thegoto attribute by requesting a different page. The effect is that the next

displayed page isdisplay-error, and notdisplay-result.

5.5 See the example live

Under this URL the example is running.3

5.6 Some observations

• After you entered two numbers into the boxes, pressed the "Compute Result" button, and then went back, you see
the two numbers again. This is because we do not change the contents offirst_number andsecond_number by
our program, so they keep their values. That means that these variables are not just CGI parameters, they have some
"magic" causing that they are automatically passed from one page to the next and back to the previous one.

• This works even if you enter invalid numbers. You will see the error message, but when you go back, the invalid
values appear again.

• You may ask from where the variables get their initial values. The initial values are implicitly defined by the
<ui:variable> declarations, because a string variable defaults to the empty string. You can specify another initial
value, for example

<ui:variable name="first_number">
<ui:string-value>42</ui:string-value>

</ui:variable>

declares that42 is the intial value forfirst_number.

5.7 How to get this example running

• Of course, you must have installed WDialog properly (see the INSTALL file coming with the distribution)

• Now go into the directoryexamples/adder. You will find the three mentioned files here. Run

./index.cgi

from the command line. A message appears explaining that this is a CGI program, and you will be prompted for
parameters. Just enter. and press Enter:

ice:/home/gerd/npc/uiobjects/examples/adder > ./index.cgi
This is a CGI program. You can now input arguments, every argument on a new
line in the format name=value. The request method is fixed to GET, and cannot

3(URL: http://wdialog.sourceforge.net/examples/adder/)

18



WDialog Manual WDialog / Introduction / An Example

be changed in this mode. Consider using the command-line for more options.
> .
(Continuing the program)
Content-type: text/html; charset=UTF-8
Cache-control: no-cache
Pragma: no-cache
Expires: Fri, 08 Feb 2002 01:01:37 +0000

<html >
<head >
<title >The Ultimative Adder</title>

</head>
<body >
...
</body>

</html>
...

The script outputs the start page. If you get it, everything is installed right.

• Now you have to configure your web server (do you have one?) to run CGIs. This depends on your product (sorry).

• Finally, you can enter the right URL into your browser, and the example will appear. Again, the "right URL"
depends on your web server configuration.

• For maximum speed, it is better to compile the program. Objective Caml has two compilers, one generating byte
code, and the other generating assembly language code. Byte code has only medium speed, but it is platform-
independent. Of course, the assembly language code is much faster. The two compilers have to be invoked as
follows:

ocamlfind ocamlc -o byte.cgi -package wdialog -linkpkg index.ml

ocamlfind ocamlopt -o fast.cgi -package wdialog -linkpkg index.ml

The UI definition must be named after the CGI, so you better create the symlinks:

ln -s index.ui byte.ui

ln -s index.ui fast.ui

You do not need to recompile the program if you only change the UI definition.

19



More Examples

Web Path: WDialog / Introduction / More Examples

6 Examples included in the source tarball

The distributed sources include some examples:

• adder: The adder as described in the previous section

• adder-jserv: Another version of the adder that uses the JSERV connector instead of CGI

• list-ml: Displays directories of the file system. Introduces into the usage of templates and associative variables.
This program is also an example of internationalization.

• list-alt-ml: An alternate solution of the directory browser.

• list-dbm-ml: Another variant (derived fromlist-alt-ml) that stores sessions into databases.

• list-dbm-popup-ml: Another variant (derived fromlist-dbm-ml) that demonstrates popup windows.

The examples can be found in the directorycode/examples.

7 A complete application: WTimer

As a real-life demonstration I have written a complete application for WDialog: WTimer allows the user to edit time
sheets that are stored in databases. The application is complete, and proves that a real-life application can actually be
developed.

WTimer is not a simple program, but I think it is well-structured, and you can immediately understand which module
implements which feature. The code is sometimes tricky, however, as complicated user interactions must be processed.
So I think it is not a good idea to read this example as the first one, but it serves as an illustration how to combine the
elementary features of WDialog to get non-trivial effects.

You can find more information about WTimer on theproject page4.

4(URL: http://www.ocaml-programming.de/packages/documentation/wtimer/)

20



Reference

Web Path: WDialog / Reference

8 The reference manual: How it is organized

There are a lot of chapters, but they fall all into one of the following categories.

• A large part of the manual is dedicated to the UI definition language. The sectionThe UI language(→ 77) contains
descriptions for every ui element such asui:application (→ 86), ui:variable (→ 170), orui:button (→ 87). The
small chapters aboutProcessing instructions(→ 76), andThe standard UI library(→ 182) should be mentioned
here, too.

• Another part describes the API of the WDialog library. The chapterWDialog API (O’Caml)(→ 183) goes through
the whole interface of the library, and describes every type, class, and function. The manual currently covers only
the O’Caml version of the library; the Perl bindings are only documented asperldoc in the individual Perl modules.

• There are some fundamental concepts that are important for both the UI definition and the application program. The
chapters aboutDialogs(→ 22),Data types(→ 27),Events(→ 41), andTemplates(→ 49) fall into this category.

• Finally, there are chapters about advanced techniques describing expert knowledge:Internationalization(→ 67),
Output encodings(→ 71),Runtime models(→ 227).

21



Dialogs

Web Path: WDialog / Reference / Dialogs

9 Dialogs

Unsurprisingly, dialogs are the central notion of WDialog. The idea is that consecutive user interactions share the same
state, one only being a small modification of the other. Imagine you want to program a table editor, and the user interface
allows the user to add rows, add columns, delete rows, delete columns, and fill values into the cells of the table. All these
actions are very similar, and the most important part of the shared state is the table the operations modify. So in our first
approximation the dialog consists of a series of similar actions targeting to modify the same operand.

If we look closer at this model, we can find out that the "shared state" and the "interactions" have a certain structure. The
state consists often of some "main state" and some "auxiliary state". In our example, the representation of the edited table
would be "main state", but we can easily imagine that there are some variables around it that are only needed for certain
actions. The operation "delete row" needs certainly a designator that determines which rows are object of the deletion.
This could be some checkboxes, and it is possible to select the rows to delete, or it could be an input box for the index
of the row to delete. Such a designator would be an example for "auxiliary state", typically it is only required for certain
operations, and only for the next operation the user triggers.

The interactions seem to consist of an "output part" and an "input part". In general, the output part is the HTML page that
is generated. The input part are the input boxes, checkbuttons, hyperlinks etc. the user can interact with, and that produce
some value that is transferred to the server. Unfortunately, the output part and the input part are mixed up on the HTML
level: If I want to create a text box, I have to send a text like

<input type=text name="name_of_the_box" value="initial_value">

to the browser, i.e. if I want to create the input facility, I have to output text first (and it must be embedded at the right
place). Furthermore, I have to remember the name of the text box, so I can later identify the input value the browser sends
back when the user has filled out the text box.

It is easy to imagine that it can become quite difficult to manage the various components of the state, and that it is a
complicated task to generate the HTML code for input widgets such that the data stream returned by the browser can be
interpreted. WDialog even goes one step further: It integrates the concepts for state and the concepts for input widgets.

An input box needs a state variable that is bound to it. Such a variable can be declared by the XML statement:

<ui:variable name="textvariable" type="string"/>

The state management routines of WDialog automatically ensure that the state variables keep their values in the whole
dialog cycle (i.e. in the current series of user clicks). This special property is called thepersistencyof dialog state. This
does not mean that the dialog state is stored in some non-volatile memory, it only means that the state survives the cycles
of the underlying HTTP protocol.

Furthermore, the creation of the input box is denoted by the special XML element

22



WDialog Manual WDialog / Reference / Dialogs

<ui:text variable="textvariable"/>

which is automatically translated by WDialog to the previously mentioned<input type=text> HTML element, but
which should be better considered as a new widget with unique properties. This text box always visualizes the current
value of the variabletextvariable. This means that if the program modifies the variable, the text box will reflect the
change at the next opportunity, and it means that if the user edits the text box, the updated value will be stored in the
variable.

In WDialog all input widgets are tied to state variables. There is even a symmetry between the possible input widgets
and the data types of variables. Obviously, a text input box needs a string variable. A selection box needs an enumerator
variable. When I designed WDialog I extended the possible data types until I found a set that can easily represent the
states of the widgets.

A dialog consists often only of one major "screen", i.e. one way of arranging the HTML page. In the "table" example,
the main layout is certainly the table itself. However, it is also clear that there must be auxiliary pages (e.g. output a
warning before continuing an action) such that it is possible to switch between the main page and the auxiliary pages
without losing the state. Because of this, the dialogs may define several pages, i.e. fundamental ways of generating the
HTML visualization at the current step of the dialog. A page simply consists of a tree of HTML elements and elements
of the UI language like<ui:text> that are transformed to HTML elements. When WDialog selects the page, it selects
between several of such trees of HTML visualization.

There is another aspect of pages. When the user clicks at a hyperlink or presses a button, an action is triggered, and a new
page is displayed. The name of the action is calledevent.

9.1 The static properties of dialogs

The static properties are configured in the UI definition. The following elements have impact on this configuration:

• ui:enumeration and ui:enum(→ 111) defines types that can be used for enumerator variables. The name of the
ui:enumeration can occur in thetype attribute ofui:variable (→ 170) declarations of the same dialog. See the
description ofui:enumeration and ui:enum(→ 111) for more explanations, and for an example.

• ui:variable (→ 170) declares the instance variables of the dialogs. These variables are persistent, i.e. they do not
lose their contents between HTTP invocations. The variables are typed, see the chapter aboutData types(→ 27)
for a description of the (very simple) type system. ui:variable allows it to specify the initial value that is assigned to
the variable when the dialog object is created. The variables can be accessed from the UI definition by the element
ui:dynamic(→ 102), and by all elements that have avariable attribute (i.e. ui:checkbox(→ 91), ui:radio (→
144), ui:text and ui:password(→ 160), ui:select(→ 150), ui:textarea(→ 163), ui:ifvar (→ 124), ui:iterate (→
132), andui:enumerate(→ 108)). Thebracket expressions(→ 176) can refer to variables, too. The UI definition
does not allow any algorithmic modifications of variables; the contents of variables can only be changed by user
interaction. However, the application program can both read from and write to variables, see the language- specific
sectionsData types (O’Caml)(→ 32), andData types (Perl)(→ 35) for an overview.

• ui:page(→ 135) defines the HTML trees that can be output as visualization of the dialog. The pages can also be
regarded as top-level templates, and most of the rules explained in the chapter aboutTemplates(→ 49) can actually
be applied to pages, too. Templates and pages only differ in the way they are called: While templates are explicitly
invoked by UI definition code (ui:use), pages are called by the output routine of the dialog.

• ui:context(→ 96) allows one to set context parameters for the scope of the dialog. See the chapter aboutTemplates
(→ 49) for details.

• Another property of dialogs is the ability to generate events on certain user interactions. There must be aui:form
(→ 117) element in the page definition in order to enable this feature, and all interactors that can trigger events must
only occur inside this ui:form. These interactors areui:a (→ 80), ui:button (→ 87), ui:imagebutton(→ 127), and
ui:richbutton(→ 147). There is a chapter aboutEvents(→ 41) explaining the details.

23



WDialog Manual WDialog / Reference / Dialogs

Note that all static properties are determined by the UI definition, and none by the application program.

9.2 Programming dialogs

Once defined in the UI language, the dialogs exist for WDialog. However, there are not yet any actions that can be
triggered by the events, and there are not yet any ways to set up the state variables such that the page can be displayed
properly. This must be done by programming a Caml class (or Perl class, but the following text assumes Caml) that
extends the base classdialog. The base class implements the fundamental behaviour of dialogs, but it is incomplete and
must be complemented by two very special methods.

The first method has the fixed nameprepare_page, and it is called just before a page is displayed. The task of this method
is, in general, to set the state variables to the right values for the page generation. Remember that the generated HTML
code usually refers to variables because of bound interactors, and that the code contains the values of these variable in one
or the other way. For example, the variables could be loaded from a database.

The other method has the fixed namehandle, and it is called just after the user has triggered an event. This method should
find out the right action for the event, and perform this action. For example, it could save the user-modified contents of
the state variables into the database. Another task of thehandle method is to determine what happens next. The question
is which page is to be displayed next (such thatprepare_page can be called in turn, and that the page can be generated).
It is also possible thathandle decides to leave the whole dialog, and to continue with another dialog.

The dialog cycle consists of a possibly infinite sequence ofprepare_page andhandle calls.

The programmed class must inherit from the base classWd_dialog.dialog(→ 187) with the typedialog_type as defined
in the moduleWd_types(→ 205):

class my_dialog universe name env =
object(self)

inherit Wd_dialog.dialog universe name env

method prepare_page() = ...

method handle() = ...
end

;;

The base class provides methods to access the variables. For example, it is possible read the value of a variable by

let v = self # variable "varname"

and you can set the variable to a new value by

self # set_variable "varname" v

See the chapter aboutData types (O’Caml)(→ 32) for more such methods. The definition ofdialog_type, found in
Wd_types(→ 205), can be used as reference.

After the dialog class has been defined, it must be registered in the universe. The universe contains which Caml class
implements which dialog. In the simplest case, the registration can be done as callback fromWd_run_cgi.run(→ 196):

24



WDialog Manual WDialog / Reference / Dialogs

Wd_run_cgi.run
~reg:(fun universe ->

universe # register "my_dialog" (new my_dialog)
)

()

The idea of the universe is explained below.

9.3 The dynamic properties of dialogs

After dialog objects have been created, the following dynamic properties can be expected:

• The current pageof the dialog is the name of one of the declared pages (initially thestart-page). During the
handle callback there is also thenext pagethat is normally the same as the current page, but can be set to a
different page by the callback implementation. Of course, the system will switch to the next page as the new current
page when the next dialog cycle will be performed.

• The values of the variables can be changed by interactors likeui:text and ui:password(→ 160) that are bound to
variables, and by explicitly calling theset_variable method from the application program.

• The name of the most recent event is automatically stored in the dialog object, and can be accessed by calling the
event method.

• The dynamic properties of dialogs can be extended by defining the two callback methodsprepare_page and
handle. Theprepare_page callback should set variables that are needed to display the next page, andhandle
should look at the last event and should do the actions implementing the intended meaning of the events. The
callback routines can access all static and all dynamic properties of the dialog.

9.4 The universe of dialogs

The remaining question is: how are dialog objects created, and what can the application programmer do to modifiy
their behaviour? WDialog has the concept of auniversethat defines what can be dynamically created, and the universe
especially contains the registry of dialog object constructors. Such a constructor is simply a function that returns the new
dialog object as result. In particular, constructors have the functional type

universe_type -> string -> environment -> dialog_type

i.e. the three arguments universe, dialog name (the string), and the environment are passed to the constructor, and the
object of typedialog_type is returned. Because of this signature, implementations of dialog classes usually take exactly
these arguments as class arguments (i.e.class my_dialog universe name env = ...), such that thenew operator
can be directly used to create the object (i.e.new my_dialog is a working constructor).

At program startup, the universe is initialized, and the application program (usually) puts the constructors for all dialogs
into the universe. This is done by theregister method of the universe (e.g.universe # register "my_dialog"
(new my_dialog)). Later, the universe is used to create new dialog objects, e.g.

let dlg = universe # create env "my_dialog"

25



WDialog Manual WDialog / Reference / Dialogs

The new objectdlg knows all static properties that have been declared in the UI definition, but it still in the initial state
regarding the dynamic properties. When the application program creates the new object, it has to ensure that the variables
are set up as required by the program logic.

There is another, internal usage ofcreate. This method is also used by WDialog to reactivate the current dialog after
process startup. The variables, and the other dynamic properties are set to the state they had when the last cycle ended, in
order to keep the illusion that the dialog state persists across consecutive cycles.

26



Data types

Web Path: WDialog / Reference / Data types

10 Data types

The WDialog system has its own type system for the values of instance variables of dialogs. On the one hand, such values
must be simple to manipulate from programs (which implies a simple representation); on the other hand, such values must
be powerful enough to express the states of interactors.

10.1 The string type

There are at least three applications for string types:

• String variables can be included as dynamic text into generated HTML pages, i.e. the program computes some text
to be put at a certain place of the HTML code. This can be achieved by the elementui:dynamic(→ 102), or by
usingbracket expressions(→ 176).

• String variables can be tied to interactors which use strings as base type. The most common example are text input
boxes which can be created by theui:text (→ 160) element.

• Sections of code can be included or excluded depending on whether a string variable has a certain value; seeui:if
(→ 119), andui:ifvar (→ 124).

In computer science, there is a common understanding of what strings are; so it is not necessary to explain here their
fundamentals. However, we state here that every character can be a member of a string (even null characters) and that
strings can be reasonably long (for a typical web application, 1MB might suffice as maximum length). The supported
character sets are ISO-8859-1 (Latin 1) and UTF-8 (Unicode).

In variable declarations (ui:variable (→ 170)), the string type may be referred to by the literal

string

In order to denote initial string values of variables, one can use theui:string-value(→ 157) element.

10.2 Declared enumerator types

Several interactors allow the user to choose a set of values from a given base set. For example, the HTML select tag
lists several options, and one can individually select which options to choose. For such cases, it is possible to declare an
enumerator, which is a new type enumerating all possible options. An example (see alsoui:enumeration(→ 111)):

<ui:dialog name="example">
<ui:enumeration name="sex">

<ui:enum internal="male"/>
<ui:enum internal="female"/>

</ui:enumeration>

27



WDialog Manual WDialog / Reference / Data types

...
<ui:variable name="person’s_sex" type="sex"/>
...
<ui:page name="select_your_sex">

...
<ui:select variable="person’s_sex" multiple="no"/>
..

</ui:page>
...

</ui:dialog>

An enumerator has the following properties:

• The type defines a list of literals (here "male" and "female"); also called the internal values. An instance of the type
is a subset of these values. (In our example, these subsets will have a cardinality of <= 1 becausemultiple="no"
restricts theui:select interactor such that only one item can be selected. Actually only the subsets {}, {"male"}
and {"female"} are possible.)

• It is not possible to have the same internal item twice in a subset.

• The items are ordered. This is important for the visualization, because although sets are often meant without order,
eventually there must be an order when the items are displayed. (In our example, this means that the selection box
will first display "male", and then "female".)

Furthermore, the internal items may have corresponding external values. The internal value is used to identify the item
in an algorithm or in a database, and the external value is the corresponding representation when the item is displayed. If
not defined, the same literals are used for the internal and the external values. Example:

<ui:enumeration name="sex">
<ui:enum internal="male" external="You are a man"/>
<ui:enum internal="female" external="You are a woman"/>

</ui:enumeration>

Enumerators have the following applications:

• Enumerator variables can be tied to interactors (ui:select(→ 150),ui:checkbox(→ 91),ui:radio (→ 144)) working
on sets of items.

• It is possible to use enumerators as index to associative values (see below), and to iterate over the index domain
(seeui:enumerate(→ 108)).

In order to specify initial values of enumerator variables, one can apply theui:enum-value(→ 107) element.

10.3 The dynamic enumerator type

Declared enumerators are restricted as the possible items must all be known at the time when they are declared. Sometimes
the items are only known at run time, and in this case dynamic enumerators may be the solution.

Like declared enumerators, values of dynamic enumerators are ordered sets of internal items with corresponding external
values; the difference is that you may add any pair (int,ext) of internal/external pairs at run time to a dynamic enumerator.
In the following example, the user can select a subset of things of a computed base set of things:

28



WDialog Manual WDialog / Reference / Data types

<ui:dialog name="example">
...
<ui:variable name="selected_things" type="dynamic-enumerator"/>
<ui:variable name="possible_things" type="dynamic-enumerator"/>
...
<ui:page name="select_your_things">

...
<ui:select variable="selected_things" base="possible_things"

multiple="yes"/>
..

</ui:page>
...

</ui:dialog>

It is assumed that theprepare_page method of the dialog class fills the variablepossible_things in a reasonable
way. Theui:select(→ 150) interactor needs now two attributes, one (base) determining the list of items to display, and
the other one (variable) containing the subset of items that are actually selected by the user. In contrast to declared
enumerators, the latter attribute does not imply the base set, so it is necessary to specify it additionally.

In order to specify initial values of dynamic enumerator variables, one can apply theui:dyn-enum-value(→ 101) element.

10.4 The dialog type

It is possible to declare instance variables whose values are complete dialog objects. An important motivation for this
possibility are sub dialogs, i.e. dialogs which can be called from arbitrary other dialogs, and which are able to return to
their caller object whatever it was.

Consider the following (incomplete) example:

<ui:dialog name="calling_dialog" start-page="...">
...
<ui:variable name="v" .../>
...
<ui:page name="calling_page">

...
As in many other dialogs, you can now go to our
<ui:a name="call_event">special dialog</ui:a>.
...

</ui:page>
</ui:dialog>

<ui:dialog name="called_dialog" start-page="called_page">
...
<ui:variable name="caller" type="dialog"/>
...
<ui:page name="called_page">

...
You can now do ... this ... and ... that.
<ui:a name="return_event">Return to previous dialog.</ui:a>
...

29



WDialog Manual WDialog / Reference / Data types

</ui:page>
</ui:dialog>

Thehandle methods of both objects must perform special actions, which can be described as follows:

• calling_dialog: The handle method is invoked when the user clicks on the hyperlink pointing to the "special
dialog", and in this case the method receives thecall_event. The special action is to (1) create the new dialog
instance forcalled_dialog, (2) initialize the variablecaller with the current dialog (which iscalling_dialog),
and (3) change the current dialog seen by the user tocalled_dialog. This causes that the system shows the
called_page as next page.

• called_dialog:Thehandle method is invoked when the user clicks on the hyperlink "Return to previous dialog".
The event sent to the method isreturn_event, and the following actions are needed to actually return: (1) Fetch
the previous dialog instance from the variablecaller, and (2) change the current dialog to this instance. This
causes that the system shows the last page of this dialog again.

Note that there are no dialog literals in the UI language; variables of dialog type can only be set from the program. It is,
however, possible to access the inner variables of a dialog variable by using the dot notation, see the section aboutDot
notation (v1.v2)(→ 180) for details.

10.5 Associative variables

Often, it is necessary to manage lists of interactors. Of course, it is possible to generate the HTML code by instantiating a
page fragment several times (you can describe page fragments byui:template elements(→ 158)); however, the question
arises how to refer to the first, the second, ... the nth generated interactor. One possibility would be to generate the names
of the interactors; but this can be complicated. Because of this, the WDialog system provides a general solution to refer
to generated interactors.

All interactor elements know the attributeindex which can be used as a second identifier besides the name or the variable
to which the interactor is bound. For example, the following two buttons will trigger different events when the user clicks
at them:

<ui:button name="click" index="1" label="Select this"/>
<ui:button name="click" index="2" label="Select that"/>

The event structure sent to thehandle method of the object contains both the name of the button and the index value, if
present. Note that index values may be arbitrary strings (the system encodes "unsafe characters" such that they can be
safely transported over the HTTP/CGI connection).

Many interactors are tied to variables. For example, theui:text (→ 160) element displays an input box which initially
shows the current value of the variable, and when the user modifies the box, the changed value will automatically be
transferred back to the variable. This shows that if we want indexed interactors, we need indexed variables to which these
interactors can be bound.

In the terminology of WDialog these variables are calledassociative. The value of an associative variable is a mapping
from keys (indexes) to values where the (index,value) pairs are ordered (for the same reason why enumerators are ordered:
when they are displayed, an order is required).

For example, it is possible to declare an associative variable of strings

30



WDialog Manual WDialog / Reference / Data types

<ui:variable name="v" type="string" associative="yes"/>

and to refer to this variable from input boxes:

<ui:text variable="v" index="1"/>
<ui:text variable="v" index="2"/>
...

Here, the first input box accesses and modifies the value ofv which is stored at the key "1", and the second box the value
which is stored at the key "2". Both input boxes refer to the same variable, but they actually access different components
of the variable.

It is not only possible to declare associative string variables, but also associative enumerators, dynamic enumerators and
dialogs.

In order to specify default values of associative variables, one can use theui:alist-value(→ 84) element.

31



Data types (O’Caml)

Web Path: WDialog / Reference / Data types / Data types (O’Caml)

11 The representation of the data types in O’Caml

In the O’Caml environment, the dialog data types are represented as follows:

type var_value =
String_value of string

| Enum_value of string list
| Dialog_value of dialog_type option
| Dyn_enum_value of (string * string) list
| Alist_value of (string * var_value) list

(You can find this in the moduleWd_types(→ 205).) This leads to the following value literals:

• Strings:A string with value s is written as

String_value s

• Declared enumerators:An enumerator value that contains the internal items x1, x2, ... is written as

Enum_value [x1; x2; ...]

The items may be in any order; when an enumerator value is displayed by an interactor, the items are rearranged
according to the declared order (as found in the ui:enumeration element). The enumerator value is checked for
compatibility with the declaration when an instance variable is set to the value by theset_variable method (i.e.
it is checked whether only declared items occur in the passed list of items, and whether they occur only once).

• Dynamic enumerators:A dynamic enumerator value that contains the internal items x1, x2, ... and the correspond-
ing external items y1, y2, ... is written as

Dyn_enum_value [ (x1,y1); (x2,y2); ... ]

The order of the items specify the order of the enumerator. When an instance variable is set to such a value it is
checked whether every internal item occurs only once.

• Dialogs: A dialogdlg is written as variable value in the following way:

Dialog_value (Some dlg)

Note that there is also the non-existing dialog which is written as

Dialog_value None

(The system uses this value as default values for variables of typedialog; there is simply no other reasonable
default.)

• Associative values:An associative list with the keys k1, k2, ... and the corresponding values v1, v2, ... is written as

Alist_value [ (k1,v1); (k2,v2); ... ]

The order of the pairs specify the order of the list. When an instance variable is set to such a value it is checked
whether every key occurs only once.

32



WDialog Manual WDialog / Reference / Data types / Data types (O’Caml)

11.1 Getting values of variables

Let dlg be the current dialog object in the following examples. In order to get a variable of arbitrary type one can invoke
thevariable method:

let v = dlg # variable "name" in ...

After that,v is avar_value (i.e. something likeString_value, Enum_value etc.). - If you already know that the variable
is a string, you can also call:

let s = dlg # string_variable "name" in ...

Now s is directly an O’Caml string (and not aString_value). - For the other types, there are direct accessor methods,
too:

let enum = dlg # enum_variable "name1" in ...
let dyn_enum = dlg # dyn_enum_variable "name2" in ...
let dlg’ = dlg # dialog_variable "name3" in ...

For associative lists, there are several possibilities to get values in a more convenient way. First, one can directly get the
defining list:

let alist = dlg # alist_variable "name" in ...

Furthermore, it is possible to look up a component "key" of the list by one of the following invocations (depending on the
base type):

let s = dlg # lookup_string_variable "name" "key1" in ...
let enum = dlg # lookup_enum_variable "name" "key2" in ...
let dyn_enum = dlg # lookup_dyn_enum_variable "name" "key3" in ...
let dlg’ = dlg # lookup_dialog_variable "name" "key4" in ...

11.2 Setting values of variables

There is only one method to set a variable to a valuev:

dlg # set_variable "name" v

Constructing avar_value from a base value is already very simple, such that there is no need for methods setting the
base value directly. For example, if a variable must be set to a strings, the following elegant notation is possible:

33



WDialog Manual WDialog / Reference / Data types / Data types (O’Caml)

dlg # set_variable "name" (String_value s)

11.3 Resetting values of variables

There is another method that resets a variable to its initial value:

dlg # unset_variable "name"

11.4 The dot notation

As a more convenient method to access variables of inner dialogs, it is possible to refer to variables by the dot notation.
For example, if there is a dialog-type variabled, and the string variables is defined within the dialog that is currently the
value ofd, you can get the string contents ofs by this expression:

let s = dlg # string_variable "d.s"

This is a shorthand notation for:

let s =
match dlg # dialog_variable "d" with

None -> failwith "Dialog variable is empty!"
| Some d -> d # string_variable "s"

See the section aboutDot notation (v1.v2)(→ 180) for a broader discussion of this topic.

34



Data types (Perl)

Web Path: WDialog / Reference / Data types / Data types (Perl)

12 The representation of the data types in Perl

In the Perl environment, the dialog data types are represented as Perl classes:

• UI::Variable::String is the class representing the string type

• UI::Variable::Enum is the class representing the type of declared enumerators

• UI::Variable::DynEnumis the class representing the type dynamic-enumerator

• UI::Variable::Dialog is the class representing the dialog type

• UI::Variable::Alist is the class representing associative lists

Before you can access these classes, you must load them:

use UI::Variable;

- loads all classes at once.

In the following explanations, the objects of these classes are called "value containers", as they serve as containers for a
low-level representation of values5.

12.1 The interfaces of the value containers

12.1.1 UI::Variable::String

A string container can be created by

my $s_container = new UI::Variable::String("The string");

The string of such a container can be read by calling

my $s = $s_container->value; # returns "The String"

Note that it is normally not necessary to use string containers as there are special access methods for string variables
(string_variable andset_string_variable).

5The containers contain methods to map the contained values to the corresponding O’Caml value, and to map O’Caml values back. Actually, the
O’Caml values are the low-level representation from the view of the Perl bindings.

35



WDialog Manual WDialog / Reference / Data types / Data types (Perl)

12.1.2 UI::Variable::Enum

A container for a declared enumerator can be formed by

my $e_container = new UI::Variable::Enum("x1","x2",...);

where x1,x2,... are the internal items of the enumerator. If necessary, it is possible to add a new internal item to an already
existing container:

$e_container->add("x3");

The list of internal items of an enumerator can be read by

my @items = $e_container->value; # returns ("x1","x2","x3")

The number of items:

my $n = $e_container->length;

To iterate over the items of a container, apply this method:

$e_container->iter( sub { my $item = shift; .... } )

12.1.3 UI::Variable::DynEnum

A dynamic enumerator consisting of the internal items x1, x2, .. and the corresponding external values y1, y2, ... can be
formed by:

my $d_container = new UI::Variable::DynEnum(["x1","y1"],["x2","y2"],...);

There is also a method to add another pair:

$d_container->add("x3","y3");

The list of pairs can be requested by calling:

36



WDialog Manual WDialog / Reference / Data types / Data types (Perl)

my @pairs = $d_container->value;

In this example,@pairs is equal to the list

(["x1","y1"],["x2","y2"],["x3","y3"])

The number of pairs:

my $n = $d_container->length;

To iterate over the items of a container, apply this method:

$d_container->iter( sub { my ($x,$y) = @_; .... } )

Here,$x is the interal and$y the external value of the current pair that is being visited during the iteration.

12.1.4 UI::Variable::Dialog

An UI::Dialog instance$dlgobj can be put into a value container by

my $o_container = new UI::Variable::Dialog($dlgobj);

To get the dialog back, do

my $dlgobj = $o_container->value;

12.1.5 UI::Variable::Alist

An associative list of values is handled like a dynamic enumerator. An alist container consisting of the keys i1,i2,... and
the corresponding values v1,v2,... can be created by

my $a_container = new UI::Variable::Alist( ["i1",$v1], ["i2",$v2], ... );

Here, i1, i2, etc must be strings, and$v1, $v2, etc must be value containers (UI::Variable::String, or -::Enum, or
-::DynEnum, or -::Object). It is possible to add another key/value mapping:

37



WDialog Manual WDialog / Reference / Data types / Data types (Perl)

$a_container->add("i3",$v3);

The list of pairs can be requested by calling:

my @pairs = $a_container->value;

In this example,@pairs is equal to the list

(["i1",$v1],["i2",$v2],["i3",$v3])

The number of pairs:

my $n = $a_container->length;

To iterate over the items of a container, apply this method:

$a_container->iter( sub { my ($i,$v) = @_; .... } )

Here,$i is the index (key) and$v the corresponding value of the current pair that is being visited during the iteration.

12.2 Getting values of variables

Let $ui be theUI::Dialog in the following examples. In order to get a variable of arbitrary type one can invoke the
variable method:

my $v = $ui->variable("name");

This method returns a value container, i.e. one object of the classesUI::Variable::String, -::Enum, -::DynEnum,
-::Dialog, or -::Alist. For instance, if the object is a string, the scalar value of the string can be obtained by:

my $s = $ui->variable("name")->value;

For convenience, the types string and enumerator are supported specially. To read a string scalar, one can alternatively
invoke:

my $s = $ui->string_variable("name");

38



WDialog Manual WDialog / Reference / Data types / Data types (Perl)

Enumerator values can be accessed by calling:

my @e = $ui->enum_variable("name");

@e will be the list of internal items.

12.3 Setting values of variables

The method set_variable changes the value of a variable. You must pass the name of the variable and the value container
$v to the method:

$ui->set_variable("name", $v);

For example, to set the value of a string variable to"happy", the following statement can be executed:

$ui->set_variable("name", new UI::Variable::String("happy"));

For convenience, there is a "shortcut method" for strings:

$ui->set_string_variable("name", "happy");

12.4 Resetting values of variables

The following method sets the value of a variable back to its initial value - either the default specified in theui:variable
(→ 170) element, or the null value of the type:

$ui->unset_variable("name");

12.5 The dot notation

As a more convenient method to access variables of inner dialogs, it is possible to refer to variables by the dot notation.
For example, if there is a dialog variabled, and the string variables is defined in the dialog that is currently the value of
d, you can get the string contents ofs by this expression:

my $s = $ui->string_variable("d.s");

This is a shorthand notation for:

39



WDialog Manual WDialog / Reference / Data types / Data types (Perl)

my $d = $ui->variable("d")->value();
die "Dialog is empty!" if (!defined($d));
my $s = $d->string_variable("s");

See the section aboutDot notation (v1.v2)(→ 180) for details.

40



Events

Web Path: WDialog / Reference / Events

13 Events

From an abstract point of view, when an event is triggered an event description is sent to the current dialog object which
can react on it. In reality, the process is much more complicated; the WWW browser triggers the event which causes that
a HTML form is sent to the server. The server decodes the form, reconstructs the current dialog, analyzes which event has
happened, and finally invokes the event handling method of the dialog object.

The following elements can trigger events when the user clicks the interactors they create:

• Thebutton element(→ 87) with "name", without "index":

<ui:button name="n" ...>

This type of event is calledbutton event; the only parameter of such an event is the name of the button.

• Thebutton element(→ 87) with "name" and "index":

<ui:button name="n" index="x" ...>

This type of event is calledindexed button event; the parameters are the name of the button and the index value.

• The imagebutton element(→ 127) with "name", without "index":

<ui:imagebutton name="n" ...>

This type of event is calledimagebutton event; the parameters are the name of the button and the coordinates of the
click.

• The imagebutton element(→ 127) with "name" and "index":

<ui:imagebutton name="n" index="x" ...>

This type of event is calledindexed imagebutton event; the parameters are the name of the button, the index value,
and the coordinates of the click.

• Theanchor element(→ 80) with "name", without "index":

<ui:a name="n" ...>

This type of event is calledhyperlink event; the only parameter of such an event is the name of the anchor.

41



WDialog Manual WDialog / Reference / Events

• Theanchor element(→ 80) with "name" and "index":

<ui:a name="n" index="x" ...>

This type of event is calledindexed hyperlink event; the parameters are the name of the anchor and the index value.

Besides the events resulting from interactors, there are two additional events:

• When a server popup window has been opened, apopup requestis triggered; it normally causes that the popup page
is generated and displayed in the new window.

• Of course, it is possible that the browser submits the HTML form because of a Javascript statement6. In this case,
thenull eventis generated (which may actually be a real event that does not fall into one of the event categories).

As already explained, the system reconstructs the dialog object that was active when the current page was generated.
Furthermore, the variables are updated which are tied to interactors, i.e. the variables reflect the values as they have been
edited by the user.

13.1 Handling events

In order to catch an event, one must define/override thehandle method of the dialog class. Please see the language-
specific interface descriptions for further details.

13.2 Actions

In principle, there are three different actions that may happen as a consequence of an event:

• The dialog sets its instance variables to different values, and generates the same page for the new values of variables.

• The dialog sets the instance variables, but changes the page to display.

• The dialog switches to a second dialog, and asks it to generate the next page.

6E.g. by executingdocument.uiform.submit()

42



Events (O’Caml)

Web Path: WDialog / Reference / Events / Events (O’Caml)

14 The representation of events in O’Caml

In the moduleWd_types(→ 205), the event type is defined as follows:

type event =
Button of string

| Image_button of (string * int * int)
| Indexed_button of (string * string)
| Indexed_image_button of (string * string * int * int)
| No_event
| Popup_request of string

The variants of the type correspond to the event types:

• Button event:A button event for the button n is represented as

Button n

• Indexed button event:A button event for the button n with index i is represented as

Indexed_button(n,i)

• Imagebutton event:An imagebutton event for the button n is represented as

Image_button(n,x,y)

The coordinate (x,y) is the position of the click relative to the image.

• Indexed imagebutton event:An imagebutton event for the button n with index i is represented as

Indexed_image_button(n,i,x,y)

The coordinate (x,y) is the position of the click relative to the image.

• Hyperlink event:A hyperlink event for the anchor n is represented as

Button n

The representations for hyperlinks and for buttons are intentionally the same.

• Indexed hyperlink event:A hyperlink event for the anchor n with index i is represented as

Indexed_button(n,i)

The representations for hyperlinks and for buttons are intentionally the same.

• Popup request:A popup request is represented as

Popup_request s

43



WDialog Manual WDialog / Reference / Events / Events (O’Caml)

Note that the current page is changed to the page popping up while the popup request is processed.

The parameter s of the popup request is the second argument of the generatedopen Javascript function (to simplify
parameterized popup windows). For example, a popup window declared with

<ui:server-popup page="x"/>

can be opened by the Javascript statement

open_x(window_specification, s);

The parameters is passed back to the application once the window pops up and the contents of the window are
requested. You can use this parameter arbitrarily.

Popups are explained in conjunction withui:server-popup(→ 154).

• Null event:The null event is represented as

No_event

14.1 Handling events

Thehandle method of the current dialog is called when the event has been triggered. The methodevent can be used to
find out the last event, e.g.

method handle =
let e = self # event in
match e with

Button("this_button") ->
...

| Button("that_button") ->
...

| Indexed_image_button("clicked_icon", x, y) ->
...

| _ ->
(* It is recommended to do nothing as default *)
()

When thehandle method returns normally, the current page of the current dialog is generated again. Alternatively,
another page can be set by raising the exceptionChange_page; or it can be changed to another dialog instance by raising
the exceptionChange_dialog. Example:

method handle =
let e = self # event in
match e with

Button("this_button") ->
self # set_variable "xy" (String_value "wow");
(* ... and continue with the same page *)

44



WDialog Manual WDialog / Reference / Events / Events (O’Caml)

| Button("that_button") ->
self # set_variable "xy" (String_value "boo");
raise(Change_page "another_page")

| Indexed_image_button("clicked_icon", x, y) ->
let next_dlg =

self # universe # create (self#environment) "other_dialog" in
raise(Change_dialog next_dlg)

45



Events (Perl)

Web Path: WDialog / Reference / Events / Events (Perl)

15 The representation of events in Perl

Events are represented as arrays whose components contain the properties of the events.

• Button event:A button event for the button$n is represented as

( "BUTTON", $n )

• Indexed button event:A button event for the button$n with index$i is represented as

( "INDEXED_BUTTON", $n, $i )

• Imagebutton event:An imagebutton event for the button$n is represented as

( "IMAGE_BUTTON", $n, $x, $y )

The coordinate ($x,$y) is the position of the click relative to the image.

• Indexed imagebutton event:An imagebutton event for the button$n with index$i is represented as

( "INDEXED_IMAGE_BUTTON", $n, $i, $x, $y )

The coordinate ($x,$y) is the position of the click relative to the image.

• Hyperlink event:A hyperlink event for the anchor$n is represented as

( "BUTTON", $n )

The representations for hyperlinks and for buttons are intentionally the same.

• Indexed hyperlink event:A hyperlink event for the anchor$n with index$i is represented as

( "INDEXED_BUTTON", $n, $i )

The representations for hyperlinks and for buttons are intentionally the same.

• Popup request:A popup request is represented as

( "POPUP_REQUEST", $s )

Note that the current page is changed to the page popping up while the popup request is processed. - For the
meaning of the parameter$s see the explanations in the O’Caml API.

• Null event:The null event is represented as

( "NO_EVENT" )

Note that the first component is always the type of the event and that the second component is always the name of the
event (if any). This constraint will even hold if the list of possible events will be extended in the future.

46



WDialog Manual WDialog / Reference / Events / Events (Perl)

15.1 Handling events

Thehandle method of the current dialog object is called when the event has been triggered. The methodevent can be
used to find out the last event, e.g.

sub handle {
my ($self) = shift;
my @e = $self->event;

my $e_name = $e[1]; # the second component is the name

if ($e_name eq ’this_button’) {
...

} elsif ($e_name eq ’that_button’) {
...

} elsif ($e_name eq ’clicked_icon’) {
my $x = $e[2];
my $y = $e[3];
...

} else {
# It is recommended to do nothing as default case

};

return undef; # Important!
}

The value returned by thehandle method determines the action performed after the event has been processed. An
undefined value means to display the same page again. Note that youmustinclude areturn undef statement as last
statement of the method; otherwise the value that happens to be at the top of the value stack is returned. Alternatively,
another page can be set by returning the name of the page as string (return ’other_page’). Last but not least it is also
possible to change completely to a different dialog instance by returning the reference to the dialog. Example:

sub handle {
my ($self) = shift;
my @e = $self->event;

my $e_name = $e[1]; # the second component is the name

if ($e_name eq ’this_button’) {
$self->set_string_variable("xy", "wow");
return undef;

} elsif ($e_name eq ’that_button’) {
$self->set_string_variable("xy", "boo");
return "another_page";

} elsif ($e_name eq ’clicked_icon’) {
my $next_dlg = UI::Universe::create("other_dialog");
return $next_dlg;

} else {
# It is recommended to do nothing as default case

};

47



WDialog Manual WDialog / Reference / Events / Events (Perl)

return undef; # Important!
}

48



Templates

Web Path: WDialog / Reference / Templates

16 Templates

Templates are well-formed HTML fragments containing placeholders (parameters). They are defined outside the dialogs,
but can be instantiated within the page definitions of the dialogs. When the template is instantiated, the (formal) parameters
are replaced by the passed values, resulting in a complete HTML subterm. Of course, a template can be instantiated several
times with different instance values.

16.1 Scope of templates

Templates are always globally known. For example, in the following application every page can refer to every defined
template:

<ui:application start-object="...">

<ui:template name="t1">
...
</ui:template>

<ui:dialog name="o1" ...>
...
<ui:page name="p1">

...
<!-- Instantiations of t1 and t2 are allowed here -->
...

</ui:page>
...

</ui:dialog>

<ui:template name="t2">
...
</ui:template>

</ui:application>

Templates can be instantiated from withinui:page(→ 135) definitions, and applying a template has the same effect as
if the expanded HTML fragment had been written in place of the application. It is also possible to instantiate templates
from within templates; however, recursive instantiation is not allowed.

49



WDialog Manual WDialog / Reference / Templates

16.2 Definition and instantiation of templates without parameters

A template is defined by theui:template(→ 158) element, and the simplest way to apply it is theui:use(→ 168) element.
For example, the templatet is defined as:

<ui:template name="t">
This is text from template t.
</ui:template>

The following page applies this template twice, resulting in a page displaying "This is text from template t. This is text
from template t.":

<ui:page name="p">
<html>

<body>
<ui:use template="t"/>
<ui:use template="t"/>

</body>
</html>

</ui:page>

There are some special whitespace rules for template definitions. The templatet could be read as "\nThis is text from
template t.\n" because there are newline characters before "This" and after the period. However, WDialog ignores whites-
pace at the beginning and at the end of template definitions, so you can nicely format your definition. (See below for
techniques that force the inclusion of spaces at these special locations.)

16.3 Templates with parameters

The placeholders of templates are calledparameters, and they may occur either within character data, or within attributes.
They are denoted by a dollar followed by the identifier, or by a brace containing the identifier (as in shell expressions).
Example:

<ui:template name="three_columns" from-caller="col1 col2 col3">
<table>

<tr>
<td>$col1</td>
<td>$col2</td>
<td>$col3</td>

</tr>
</table>

</ui:template>

This template expands to a table with one row and three columns, and the contents of all cells are passed by parameters to
the template. The parameters are calledcol1, col2, andcol3, and they must be declared by thefrom-caller attribute.
The replacement texts of the parameters are inserted where the parameters are referred to by the dollar notation; here

50



WDialog Manual WDialog / Reference / Templates

as$col1, $col2, $col3 within thetd element. Note that it is also possible to put the names into curly braces such as
${col1} - this is especially necessary if the parameter names consist of characters other than a-z, A-Z, 0-9, and _.

Note that the dollar character must be either written as$$ in template definitions, in order to denote the dollar character
as such.

Thefrom-caller declaration is needed for every parameter which is referred to using the dollar notation. One reason
for this rule is to make it more likely that typos in parameter names are recognized as errors and that such templates
are rejected by the system. Furthermore,from-caller also indicates that the parameters have so-called lexical scope.
Alternatively, parameter may also declared by anfrom-context attribute with a different scoping rule (see below).

The actual values for the parameters are passed byui:param (→ 140) elements which may be included intoui:use
applications:

<ui:use template="three_columns">
<ui:param name="col1">This is the left column!</ui:param>
<ui:param name="col2"><b>This is the middle column!</b></ui:param>
<ui:param name="col3">The right edge.</ui:param>

</ui:use>

Note that it is possible to pass whole XML subterms (as incol2), and not only plain texts.

Rule to process inner elements when expanding parameters in character data context:

• The passed element tree is inserted where the dollar notation occurs. Further expansions are performed within the
inserted tree after the insertion has happened (lazy evaluation).

The consequences of this rule are discussed later.

The dollar notation can be used where normal text is allowed as in the example above, or within attributes. For instance,
the example can be extended by passing the alignment attributes of thetd cells:

<ui:template name="three_columns"
from-caller="col1 col2 col3 align1 align2 align3

valign1 valign2 valign3">
<table>

<tr>
<td align="$align1" valign="$valign1">$col1</td>
<td align="$align2" valign="$valign2">$col2</td>
<td align="$align3" valign="$valign3">$col3</td>

</tr>
</table>

</ui:template>

For simple, unstructured texts the dollar notation behaves in the same way when used within attributes as when applied in
the body of elements. However, there are differences regarding real subtrees. Attributes cannot represent inner elements;
for example, it is not reasonable to pass the element<b>top</b> as parametervalign1. Because of this, the following
rules are applied to remove/process inner elements:

Rules to process inner elements when expanding parameters in attribute context:

51



WDialog Manual WDialog / Reference / Templates

• If there is a special processing rule for the element, the rule will be applied. There are only few elements defining
such a rule, the elementui:dynamic(→ 102) is among them. When used in the replacement text within attributes,
ui:dynamic expands to the value of the specified variable, and the result of the expansion is included into the
attribute value (i.e. it works in the usual way). There is an important application; you can pass the current value of
a string variable as parameter that is used within attributes. For example, if there is a string variablea1 containing
the alignment for the left column, thisui:use statement passes the contents ofa1 to the template:

<ui:use template="three_columns">
<ui:param name="align1"><ui:dynamic variable="a1"/></ui:param>
... <!-- other ui:param statements -->

</ui:use>

(However, there is a lighter notation with the same effect; see below.)

• All other elements are included as plain text. For example, if theelement"<b>top</b>" is passed as parameter
value, the expansion is thestring "<b>top</b>".

16.4 Parameters with default values

The above definition ofthree_columns is a bit impractical because whenever the template is instantiated all nine param-
eters must be passed. This can be avoided by providing defaults for parameters. The default values are simply specified
as inner text of theui:default declaration. Continuing our example:

<ui:template name="three_columns"
from-caller="col1 col2 col3 align1 align2 align3

valign1 valign2 valign3">
<ui:default name="align1">left</ui:default>
<ui:default name="align2">left</ui:default>
<ui:default name="align3">left</ui:default>
<ui:default name="valign1">middle</ui:default>
<ui:default name="valign2">middle</ui:default>
<ui:default name="valign3">middle</ui:default>
<table>

<tr>
<td align="$align1" valign="$valign1">$col1</td>
<td align="$align2" valign="$valign2">$col2</td>
<td align="$align3" valign="$valign3">$col3</td>

</tr>
</table>

</ui:template>

Now, onlycol1, col2, andcol3 must be passed, and the other parameters may be passed or omitted.

Theui:default declarations must be written at the beginning of the template; between two such declarations only white
space and comments are allowed. The following rule helps avoiding extra white space in the expansion of templates.

White space at the beginning of templates:

• White space between theui:template start tag and the firstui:default start tag is ignored. Furthermore, all
white space between consecutiveui:default elements is ignored, and white space after the lastui:default end
tag is ignored.

52



WDialog Manual WDialog / Reference / Templates

For ourthree_columns example, this rule means that the first relevant member of the template is thetable start tag,
all white space before this tag is ignored.

There is a corresponding rule for white space at the end of templates: White space before the end tag ofui:template is
ignored.

However, what to do if I want whitespace? For example, can I define a template only containing a single white space
character? Yes, it is possible, but only with a trick. Note that the following trialsdo not work:

<ui:template name="space"> </ui:template>

<ui:template name="space">&#32;</ui:template>

<ui:template name="space"><!-- --> <!-- --></ui:template>

<ui:template name="space"><![CDATA[ ]]></ui:template>

They do not work because the used XML parser normalizes white space before the WDialog transformation engine gets
the XML tree. So these definitions look all the same for WDialog. The solution is to include a reference to an empty
template in the definition. The standard library for templates defines the empty template aswd-null:

<ui:template name="space">
<ui:use name="wd-null"></ui:use> <ui:use name="wd-null"></ui:use>

</ui:template>

16.5 Templates calling templates

Of course, it is possible that a template instantiates another template. Example:

<ui:template name="mk_hyperlink" from-caller="href">
<a href="$href">$href</a>

</ui:template>

<ui:template name="caml_homepage">
<ui:use template="mk_hyperlink">

<ui:param name="href">http://caml.inria.fr/</ui:param>
</ui:use>

</ui:template>

The rules for passing parameters may become inconvenient when parameters must be passed from one template to the
next template. For instance, if we also want to be able to specify the target frame of the hyperlink, we must write:

<ui:template name="mk_hyperlink" from-caller="href target">
<a href="$href" target="$target">$href</a>

</ui:template>

53



WDialog Manual WDialog / Reference / Templates

<ui:template name="caml_homepage" from-caller="target">
<ui:use template="mk_hyperlink">

<ui:param name="href">http://caml.inria.fr/</ui:param>
<ui:param name="target">$target</ui:param>

</ui:use>
</ui:template>

The parametertarget is simply passed through fromcaml_homepage to mk_hyperlink. It is possible to avoid such
stupid forwarding of values by using parameters with dynamic scope; see below.

Note that it is not allowed that a template instantiates itself recursively.

Another way of interaction between templates is that the passed parameter value contains anotherui:use statement. For
example, we can put the hyperlink to the Caml homepage into the middle cell of the three column scheme:

<ui:use template="three_columns">
<ui:param name="col1">&nbsp;</ui:param>
<ui:param name="col2">

<ui:use template="caml_homepage">
<ui:param name="target">_blank</ui:param>

</ui:use>
</ui:param>
<ui:param name="col3">&nbsp;</ui:param>

</ui:use>

This seems to be straight-forward; however it is important to mention thatui:use is resolved lazily. This means that first
the templatethree_columns is expanded, leading to this intermediate result:

• Step 1:

<table>
<tr>

<td align="left" valign="middle">&nbsp;</td>
<td align="left" valign="middle">
<ui:use template="caml_homepage">

<ui:param name="target">_blank</ui:param>
</ui:use>

</td>
<td align="left" valign="middle">&nbsp;</td>

</tr>
</table>

In contrast to this, a direct evaluation scheme would first expandcaml_homepage and pass the result of this first step to
three_columns. However, this scheme has not been implemented. (I do not want to argue that the lazy scheme is better,
it was only simpler to implement. Evaluation depends on whether the parameter occurs in character data or attribute
context; for a direct scheme additional analysis would be necessary to find out which context applies (or the replacement
text is always computed for both cases which is time-consuming); it might be worth-while to switch to a direct scheme in
order to reduce the total number of expansions, however.)

The further expansion steps are:

54



WDialog Manual WDialog / Reference / Templates

• Step 2:

<table>
<tr>

<td align="left" valign="middle">&nbsp;</td>
<td align="left" valign="middle">
<ui:use template="mk_hyperlink">

<ui:param name="href">http://caml.inria.fr/</ui:param>
<ui:param name="target">_blank</ui:param>

</ui:use>
</td>
<td align="left" valign="middle">&nbsp;</td>

</tr>
</table>

• Step 3:

<table>
<tr>

<td align="left" valign="middle">&nbsp;</td>
<td align="left" valign="middle">
<a href="http://caml.inria.fr/" target="_blank">http://caml.inria.fr/</a>

</td>
<td align="left" valign="middle">&nbsp;</td>

</tr>
</table>

16.6 Calling templates indirectly

The following technique demonstrates how to call a template by passing the name of the template:

<ui:template name="for_caml" from-caller="templname">
<ui:use template="$templname">

<ui:param name="href">http://caml.inria.fr/</ui:param>
<ui:param name="target">_blank</ui:param>

</ui:use>
</ui:template>

This template calls the template$templname, and passes the fixed set of parametershref andtarget with a fixed set of
values to the invoked template. A possible way to use it:

<ui:use name="for_caml">
<ui:param name="templname">mk_hyperlink</ui:param>

</ui:use>

55



WDialog Manual WDialog / Reference / Templates

This code creates again the Caml hyperlink. One possible application for indirect calls is to dynamically select the
template to use:

<ui:use name="for_caml">
<ui:param name="templname"><ui:dynamic variable="templname"/></ui:param>

</ui:use>

We could have another template,no_hyperlink, which simply displays the$href parameter without making the hyper-
link; the variabletemplname selects the template. We could set this variable in theprepare_page method of the dialog
object, and make the selection of the particular template dependent on an arbitrary condition.

16.7 A better notation to reference dialog variables

In the last example, we replaced the parametertemplname by the contents of the dialog variabletemplname. There is a
better notation than usingui:dynamic:

<ui:use name="for_caml">
<ui:param name="templname">$[templname]</ui:param>

</ui:use>

This means exactly the same. Moreover, the square brackets notation can be used inside of attributes (whereui:dynamic
cannot be applied).

Example: The following template is a variant ofmk_hyperlink that extracts the values for the URL and the target from
dialog variables:

<ui:template name="mk_hyperlink">
<a href="$[href]" target="$[target]">$[href]</a>

</ui:template>

In recent versions of WDialog, the bracket notation has been generalized, and it is now allowed to write more complex
expressions inside the brackets. See the chapter about$[expr] (→ 176).

16.8 Lexical and dynamic scope

When templates call templates, it is often necessary to pass parameters through from one template to the next one. Until
now, we only have the solution to do this parameter forwarding explicitly:

<ui:template name="t1" from-caller="p">
...

<ui:use template="t2">
...
<ui:param name="p">$p</ui:param>
...

56



WDialog Manual WDialog / Reference / Templates

</ui:use>
...

</ui:template>

The parameterp is introduced at the beginning oft1, andp gets a value at this moment (either because a value has
been passed, or because there is a default value).p is visible everywhere within the definition text oft1, but it is not
automatically visible in called templates such ast2, even if there is a parameter with the same name. We must explicitly
pass p to subsequent templates to extend its scope. This way of handling the visibility of parameters is called the lexical
scoping rule.

This rule has the advantage that it can be exactly controlled which parameter is passed to which template, and it works in
most cases fine.

However, if many parameters must be simply forwarded to inner templates, a dynamic scope will better fit to the situation.
To explain it, we need the concept of adynamic parameter context. Such a context is a binding of some parameter names
to values, and it is automatically passed to inner templates. We can add a particular binding of a name to a value to the
context for a certain period of time, and the new binding will hide any previous binding of the same name while it is in
effect.

The improved definitions ofmk_hyperlink andcaml_homepage are:

<ui:template name="mk_hyperlink" from-caller="href" from-context="target">
<a href="$href" target="$target">$href</a>

</ui:template>

<ui:template name="caml_homepage">
<ui:use template="mk_hyperlink">

<ui:param name="href">http://caml.inria.fr/</ui:param>
</ui:use>

</ui:template>

mk_hyperlink now gets the parametertarget from the current context.caml_homepage no longer passes this parameter.
This template should now be called as follows:

<ui:context>
<ui:param name="target">_blank</ui:param>
<ui:use template="caml_homepage"></ui:use>

</ui:context>

The ui:context element extends the context by the parameters denoted byui:param and expands its body, here the
ui:use application.

The context parameters are a like a set of background definitions that are in effect for the time of theui:context expan-
sion. Every template called from withinui:context can access these parameters by importing them withfrom-context.

16.9 The rules of parameter passing

When a template is expanded, the definition text of the template must only consist of declared parameters, i.e. there must
be only a dollar notation for a parameter that has been declared byfrom-caller or from-context at the beginning of
the template.

57



WDialog Manual WDialog / Reference / Templates

A parameter is either lexical or dynamic. It is not allowed that the same name appears in bothfrom-caller and
from-context.

For lexical parameters (from-caller), only theui:param elements of the callingui:use are searched for instance
values.

For dynamic parameters (from-context), only the context is searched for instance values. If severalui:context ele-
ments are in effect for same parameter, the most recent definition wins and is used.

After the values have been collected, all dollar notations are replaced by their corresponding values.

16.10 Encodings

It is sometimes useful to encode the current value of a parameter. For example, imagine you have a template
print-as-html that prints the HTML code of the parameterbody:

<ui:template name="print-as-html" from-caller="body">
The HTML code is as follows:
<pre>
${body/html}
</pre>
</ui:template>

This has the effect that the encoding "html" is applied to the value ofbody. "html" replaces < by &lt; etc. There are a
number of other encodings (see the chapter onOutput encodings(→ 71)).

16.11 The t and p namespaces

Becauseui:use is a quite long notation, there are two ways to abbreviate it. Instead of

<ui:use template="x">
<ui:param name="p1">t1</ui:param>
...
<ui:param name="pN">tN</ui:param>

</ui:use>

you can also write

<t:x>
<p:p1>t1</p:p1>
...
<p:pN>tN</p:pN>

</t:x>

Furthermore, the parameters can also be passed as attributes if they only consist of unstructured text:

58



WDialog Manual WDialog / Reference / Templates

<t:x p1="t1" ... pK="tK">
<p:pJ>tJ</p:pJ>
...
<p:pN>tN</p:pN>

</t:x>

16.12 The q namespace

The other way to abbreviateui:use is theq namespace. Instead of writing

<ui:use template="x">
<ui:param name="p1">t1</ui:param>
...
<ui:param name="pN">tN</ui:param>
<ui:param name="body">tBODY</ui:param>

</ui:use>

(note the fixed namebody) it is also possible to call the template by:

<q:x p1="t1" ... pK="tK">
tBODY

</q:x>

16.13 Elements related to templates

The following elements have a relationship to templates:

• ui:template(→ 158) defines templates

• ui:default(→ 97) declares defaults for template parameters

• ui:context(→ 96) extends the current context by adding dynamic parameters

• ui:use(→ 168) instantiates templates once

• ui:param(→ 140) passes parameters explicitly to called templates

• ui:iterate (→ 132) andui:enumerate(→ 108) instantiate templates more than once

• ui:page(→ 135) behaves like a template, i.e. you can also use the dollar notation inside pages

59



Template API (O’Caml)

Web Path: WDialog / Reference / Templates / Template API (O’Caml)

17 The Template API for O’Caml

Templates can be accessed by the O’Caml code of the application. The module Template has the following signature:

exception Template_not_found of string

type template
type tree

val get : application_type -> string -> template
val apply : dialog_type -> template -> (string * tree) list -> tree
val apply_byname : ?localized:bool -> dialog_type -> string -> (string * tree) list
-> tree
val apply_lazily : dialog_type -> string -> (string * tree) list -> tree
val concat : application_type -> tree -> tree list -> tree
val empty : application_type -> tree
val text : application_type -> string -> tree
val html : application_type -> string -> tree
val to_string : dialog_type -> tree -> string

The typetemplate is the abstract handle of the representation of the template definition. It is possible to get such template
handles from the current UI definition, but they are read-only, and they cannot be constructed manually (i.e. without
reference to the UI definition). A template should be considered as an XML tree with placeholders (dollar notation).

The typetree stands for an XML tree without placeholders, or better, for an XML tree where the placeholders have
already been resolved. There are several ways to get such a tree: It is possible to form trivial trees (an empty tree, or a tree
consisting only of one data node), or to apply a template by replacing the placeholders with subtrees, or to concatenate
several trees. Note that the term "tree" has been chosen because the underlying data structure are actually XML trees;
however, there are no real tree operations, and I hope that the name is not too confusing.

There are two other types playing a role here:application_type anddialog_type. The first abstracts the UI definition
file, and the latter is the type of the dialog objects. Templates can only be used in the scope of a UI definition (because they
may refer to other templates, and these are defined for the UI definition), and template application even needs a dialog
object (because the template may refer to dialog variables).

Description:

• Template_not_found: This exception is raised by one of the functions accessing templates by name if there is no
template with the searched name. The argument is the name of the missing template.

• get app n: Returns the abstract handle to the template with the namen defined in the applicationapp (or raises
Template_not_found).

• apply dlg t p: Instantiates the parameters of the templatet with the passed treesp, and returns the resulting
instantiated template tree. If a parameter is missing, but the template defines a default value, this default value will

60



WDialog Manual WDialog / Reference / Templates / Template API (O’Caml)

be taken as the parameter value. If a parameter is missing, and there is no default value, an error will be reported.
(This means that this function does not support dynamic contexts as alternate source for parameter values.)

This function does not perform further expansion of templates; only the passed template is instantiated.

• apply_byname dlg n p: This is the same as aget followed by anapply:

let apply_byname dlg n p = apply dlg (get dlg#application n) p

The optional boolean argument~localized (default:true) selects whether the template for the current language
is preferred over the generic template. (See also the chapter aboutInternationalization(→ 67).)

• apply_lazily dlg n p: This function forms a new tree which is guaranteed to expand the templaten in the same
manner asapply_byname by passing the parametersp; however the instantiation is not performed immediately but
deferred until it is really necessary.

• concat app s tl: Concatenates all the trees of the passed tree list tl and separates the trees by s. This means,
if tl = [t1; t2;...;tN] the resulting structure is the same as if t1 s t2 s ... s tN had been written in order. (Don’t be
confused that the result cannot be a tree (but perhaps a forest) - we have never said thattreebehaves exactly as a
tree structure;tree is only a metaphor.)

• empty app: Creates an empty tree.

• text app s: Creates a tree with one data node containing the string s. When the tree is expanded to HTML, the
problematic characters are converted to the corresponding HTML entities such that the text s appears in the user
interface.

• html app s: Creates a tree with one data node containing the string s. When the tree is expanded to HTML, the
string s is left as it is without any conversion.

• to_string dlg t: Converts the tree t to HTML in the context of the dialog object dlg. Templates are now
expanded until no more templates remain. The ui:xxx elements are expanded, too. It is possible to access the object
variables of obj. Furthermore, if interactors are expanded, the necessary management infos will be entered into dlg.
(However, there is currently a conceptual bug which makes it impossible to expand ui:form elements in a reasonable
way.)

61



Template API (Perl)

Web Path: WDialog / Reference / Templates / Template API (Perl)

18 The Template API for Perl

XXX

62



Session management and security

Web Path: WDialog / Reference / Session management and security

19 Session Managers

The task of the session manager is to manage the link from the current request to the current dialog (i.e. the current
session, which is always a dialog for WDialog). By default, theinstant session manageris used that does not store the
session externally, but simply includes it literally into the current request. The hidden form fielduiobject_session
contains the data describing the current dialog as BASE64-encoded string. This has one major advantage: You do need to
set up an external data store for the sessions, instant sessions work "out of the box". In the rest of this chapter, I will try
to convince you that it is better not to trust this session manager, and that the additional work necessary to instantiate the
database session manager, memory session manager, or daemon session manageris worth-while.

19.1 The Database Session Manager

The database session manager puts the session data into a data store (that can be freely chosen), and the web request only
contains a reference to the stored record. Obviously, the web requests and responses become smaller (sometimes much
smaller), and your web application becomes faster (sometimes much faster), as fewer bytes need to be transferred over the
network. Another advantage is not that obvious, and because of this I am talking about it: your web application becomes
much more secure. I hope you understand that this is the real point behind the more complex database managers; the
Internet is full of attackers today, and is highly likely that a public application is "tested" by hackers.

Of course, using a database session manager does not ensure that your application cannot be hacked. First, there are
other potential weaknesses in the application, and second, sessions can still be "hijacked", although this becomes more
complicated.

19.2 Using the database session manager

First, you need to instantiate the classWd_dialog.database_session_manager by passing functions that allocate rows
in your database, insert rows, update rows, and lookup rows. These functions must perform the real database accesses,
such that the classdatabase_session_manager remains generic with respect to the type of the database system. The
functions are exactly described in the module interface ofWd_dialog(→ 187).

The second step is to pass the new session manager to the WDialog engine. In the case you useWd_run_cgi,
Wd_run_fcgi, or Wd_run_jserv, the entry points of the enginerun andcreate_request_handler accept the ses-
sion manager as optional argument. In the case you callWd_cycle.process_request directly, this function accepts the
session manager, too.

A complete example can be found in the directoryexamples/list-dbm-ml of the source distribution. This example
stores the sessions in an NDBM database.

The database session manager never deletes sessions. It simply does not know when a session has been dropped by the
user, and can now be removed from the database. A strategy to get rid of dropped sessions is to delete all sessions that
have not been used for a long time.

63



WDialog Manual WDialog / Reference / Session management and security

19.3 The in Memory Session Manager

The memory session manager is an easy to set up, secure alternative to the database session manager, which can only be
used by applications which stay memory resident between requests, and which exist within a single process image. In
practical terms, it can be used by sequential or threaded FastCGI and Jserv applications.

Its implementation is very simple. It generates an opaque random session identifier, which is sent out to the client as the
session id, and is also used as the index of the real session in a hash table. When the client send the id back, the real
session is looked up in the hashtable. Because of this simplicity, it does not require any special functions to be written,
and only requires the user to configure two paramaters, for how long sessions are valid, and how often to look for and
purge from memory invalid sessions.

Besides ease of use, it has one additional advantage over the database session manager. It generates a new session for
each request, and it DOES NOT throw away the old application state. This allows it to interoperate with the browser back
button where that is possible, just as the instant session manager does.

19.4 Using the in Memory Session Manager

The functionnew
Wd_inmemory_session.inmemory_session_manager Will create an instance of the memory session manager,

all you need to do then is pass it to the WDialog engine.

19.5 The Daemon Session Manager

The daemon session manager is very much like the memory session manager, however it removes several annoying
restrictions.

• It works with concurrent applications which use more than one process. It is therefore usable with all connectors
(including CGI), and all process models.

• It maintains session state even if the application crashes, or needs to be restarted.

• It performs session garbage collection in parallel which the application, and is therefore usually faster than the
memory session manager.

The daemon session manager is implemented in two parts. There is a small rpc server, which stores session data in its
memory image, and there is a wdialog session manager class which talks to it. The session manager class works much
like the in memory session manager, except that it takes 3 additional arguments, hostname, user, and password, which are
used to contact the session daemon.

19.6 Using the Daemon Session Manager

WDialog comes with a both the daemon session manager class, and an implementation of the session daemon, which is
called wdstated. The first step in using the session daemon is to configure a user name and password for each application
which uses the daemon. This is done in the wdstated.conf file, which is included with the distribution. These credentials
ensure that session data is only available to authorized applications. Next you should start wdstated as an unprivlidged
user. You can pass the location of the config file as an argument to wdstated if it fails to find it. In your application, create
an instance ofWd_daemon_session.daemon_session_manager, and pass it to the WDialog engine. Your application
should now be storing sessions in the state daemon.

64



WDialog Manual WDialog / Reference / Session management and security

20 The security problems of the instant session manager

As already pointed out, this manager includes the session data literally into web requests. The data contain essentially
marshalled O’Caml values describing the current dialog, and that means all dialog variables except the temporary ones.
Because of this we assume that any low-skilled hacker can

• read the contents of the variables

• modify the contents of the variables.

Since WDialog-2.1, the marshalling format has been changed to make it secure against attacks based on malformed
strings.

21 The security benefits of the database session manager, the in memory ses-
sion manager, and the daemon session manager

These managers do not put the session data into the web requests, but only a reference to them, while the sessions are
stored in some sort of database. The references are triples(id,key,checksum) where theid is a predictable integer
identifying the session, and thekey is a non-predictable hash value for the same purpose. Finally, thechecksum is a hash
value of the session data.

Obviously, it is no longer possible to read the dialog variables by just looking at the value of the session reference.
However, a hacker can still modify a dialog variable, because all variables are writeable by default. This is allowed
because an interactor might be bound to a variable, and the update of the variable implies the right to modify the variable.

Theui:variable(→ 170) element can declare a variable asprotected(protected="yes"). In this case, the variable cannot
be modified by web requests at all, even not by binding an interactor to the variable. (Of course, protected variables are
only sensible if the database session manager is used, because the instant session manager allows a hacker to replace the
whole session by a different one.)

The question remains whether it is possible to attack the application in a completely different way. One idea is to "hijack"
the session of another user by stealing his session reference. In theory, this is possible, but it is both difficult to get such a
reference and to abuse it. The reference is only included as hidden form field, and it is only transferred as part of a POST
request. This means that the reference is normally not written to files (e.g. cookie file, log files, cache files), but exists
only in volatile memory. So access to the disks of a computer does not help. However, browsers do (or might) contain
so-called cross-site scripting bugs. These bugs sometimes allow the attackers to read form fields such as the reference
without having the permission to do so by executing scripts in the browser. Unfortunately, nothing can be really done
against these bugs on the server side, one can only try to minimize the damages. WDialog makes it hard to abuse a stolen
session reference. First, the session contains the IP address of the browser. Often, this is already a very high hurdle to
jump over for an attack. Of course, it may be possible that the attacker has access to the same web proxy as the victim, and
so has the same IP address. Second, thechecksum of the session changes frequently, but the attacker needs the checksum
to take the session over.

Summarized, hijacking a session is possible, but difficult. Normally, the attacker needs at least two other security exploits,
one to steal the session reference, one to have access to the IP address the session is bound to.

For a highly secure application, I would additional recommend to secure the network channels, too, i.e. to use SSL/TLS.
This makes it much harder to steal the session reference as it is only transmitted in encrypted form.

Another attack one can think of is to simply guess the session reference. This is practically impossible as thekey part of
the reference is practically unpredictable, and the search space for a brute-force attack is too large (128 bits). Furthermore,
you need thechecksum, too, which is as difficult to guess as the key.

65



WDialog Manual WDialog / Reference / Session management and security

Of course, it cannot really be excluded that a working brute-force method is found. For a highly secure application, it is
recommended to install attack detectors, e.g. by counting the trials for every real key stored in the database, and to drop
the session if too much trials happen in short time. This should effectively protect against guessing the checksum.

66



Internationalization

Web Path: WDialog / Reference / Internationalization

22 Internationalization

Internationalization (I18N) is the ability to support several languages, character encodings, and local notation conventions.
Currently, WDialog has some support for that, but I18N is not yet done. In particular, the following features already work:

• UTF-8 support:It is possible to represent all character data as UTF-8 strings. By default, character data are encoded
as ISO-8859-1 (Latin-1) strings. UTF-8 does not only support many languages, but also special characters such as
mathematical symbols. In order to switch from ISO-8859-1 to UTF-8, pass the~charset:‘Enc_utf8 argument to
theWd_run_cgi.run function (orWd_run_jserv.run).

The consequence is that all strings are now UTF-8 strings, and that the generated HTML output is UTF-8, too.

The XML file(s) that contain the UI definition can be encoded differently, however. These files begin with<?xml
version=’1.0’ encoding=’ENC’?> whereENC is the name of a character encoding, for example ISO-8859-1, or
UTF-8. Many other encodings of the ISO-8859 series are possible, too. The characters read from these files are
automatically recoded to the character set demanded by thecharset option. This means that your text editor need
not to support UTF-8.

As alternative to the direct inclusion of characters, the notation&#n; (wheren is a decimal number) can be used to
denote the character number n in the input text (the Unicode character set is assumed). For the default ISO-8859-1
encoding the number n must be less than 256, but for UTF-8 all valid Unicode character codes are allowed.

• The ’language’ variable:Every dialog object may contain a language variable that selects the language of the user
interface. The name of this variable must be declared in theui:dialog element, for example:

<ui:dialog name="foo" lang-variable="current-language">
...
<ui:variable name="current-language">

<ui:string-value>en</ui:string-value>
</ui:variable>
...

</ui:dialog>

Here, the variable is initialized with the string "en". It is recommended to store two-letter ISO language codes as
abbreviations for the meant languages into the variable. The language variable can be used as any other variable,
but there are some statements that access the variable automatically. Read on for more.

• Language conditions:Theui:iflang (→ 122) element can be used to expand text only if the language variable has a
certain value. An application are message catalogs like:

<ui:cond>
<ui:iflang xml:lang="en">

This is English.
</ui:iflang>
<ui:iflang xml:lang="de">

Dies ist Deutsch.

67



WDialog Manual WDialog / Reference / Internationalization

</ui:iflang>
</ui:cond>

Of course, theui:iflang conditions are evaluated sequentially, and such "catalogs" should only be used if the
number of languages is small. Nevertheless, this construct seems to be reasonable, and there is even an abbreviation
to avoid notation overhead:

<ui:cond>
<l:en>

This is English.
</l:en>
<l:de>

Dies ist Deutsch.
</l:de>

</ui:cond>

This means exactly the same as the example above.

• Language-sensitive templates:Another way to select UI code depending on the language are templates that are
defined differently for different languages. For instance:

<ui:template name="salutation" xml:lang="en" from-caller="user title">
Good morning, $title $user!

</ui:template>

<ui:template name="salutation" xml:lang="de" from-caller="user title">
Guten Morgen, $title $user!
</ui:template>

If you invoke the template, one of the definitions is selected depending on the current state of the language variable.
You can also define a "fallback" version withoutxml:lang attribute, it is used when no special version for the
template is defined.

In reality, the above templates have the full namessalutation#en andsalutation#de, i.e. the language code is
appended to the name after the hash mark. Because of this, the language code is sometimes also called language
suffix. Of course, you can call the template by its full name, and bypass the automatic selection rules, e.g.<ui:use
template="salutation#de">.

And these features would be nice to have, but are not yet available:

• More character sets:Currently, only ISO-8859-1 and UTF-8 are possible. Other character sets should be supported,
too.

• Localized enumerations:It is not possible to define enumerations differently depending on the selected language.

• Accepted languages:There should be a library function to determine the languages accepted/preferred by the
browser.

What is really missing is a good example. I have not yet enough experience to say whether we need more features or not.

Last but not least some interesting code snippets. There are already some tricks that I should mention, as they simplify
localization a lot.

68



WDialog Manual WDialog / Reference / Internationalization

Localized attributes:Imagine you want to have a button with localized labels. The string for the label is passed as XML
attribute, and the question is: how to select attributes in a language-dependent way?

The straight-forward solution simply repeats the button:

<ui:cond>
<l:en>

<ui:button name="foo" label="Press here"/>
</l:en>
<l:de>

<ui:button name="foo" label="Hier drücken"/>
</l:de>

</ui:cond>

The drawback is that you must repeat the whole button element although only one attribute is different. Is there a better
solution?

The idea is to define a template for the button, and to pass different labels. There are several possibilities:

• (1)

<ui:template name="button_foo" from-caller="$label">
<ui:button name="foo" label="$label"/>

</ui:template>
...
<ui:cond>

<l:en>
<t:button_foo label="Press here"/>

</l:en>
<l:de>

<t:button_foo label="Hier drücken"/>
</l:de>

</ui:cond>

• (2)

<ui:template name="button_foo" from-caller="$label">
<ui:button name="foo" label="$label"/>

</ui:template>
...
<t:button_foo>

<p:label
><ui:cond

><l:en>Press Here</l:en><l:de>Hier drücken</l:de></ui:cond></p:label>
</t:button_foo>

• (3)

<ui:template name="button_foo" from-caller="$label">

69



WDialog Manual WDialog / Reference / Internationalization

<ui:default param="label"
><ui:cond

><l:en>Press Here</l:en><l:de>Hier drücken</l:de><ui:cond></ui:default>
<ui:button name="foo" label="$label"/>

</ui:template>
...
<t:button_foo/>

Unfortunately, these tricks work only for template invocations, so we must definebutton_foo and cannot do the same
with ui:button directly.

Using enumerations for localization:If the string to localize is constant, an alternative for condition testing may be an
enumeration. Continuing the last example, another solution is:

<ui:template name="button_foo" from-caller="$label">
<ui:button name="foo" label="$label"/>

</ui:template>
...
<ui:enumeration name="label_for_foo">

<ui:enum internal="en" external="Press here"/>
<ui:enum internal="de" external="Hier drücken"/>

</ui:enumeration>
...
<t:button_foo>

<p:label
><ui:translate type="label_for_foo"

internal="$[language()]"/></p:label>
</t:button_foo>

Here,$[language()] expands to the current language code, and theui:translate(→ 165) element finds the corresponding
external string for this code.

With enumerations it is even possible to avoid the extra template definition completely:

<ui:enumeration name="label_for_foo">
<ui:enum internal="en" external="Press here"/>
<ui:enum internal="de" external="Hier drücken"/>

</ui:enumeration>
...
<ui:button name="foo" label="$[translate(enum(label_for_foo),language())]"/>

Theenum expression is a special form that returns the declaration of the named enumeration. Thetranslate function
does the same as ui:translate, but can be used in abracket expression(→ 176).

70



Output encodings

Web Path: WDialog / Reference / Output encodings

23 Output encodings

This section explains how character data in the generated HTML output are encoded. The are various aspects of this
theme, and it is quite easy to get totally confused. Because of this, I will first explain how character data change their
encoding type during the processing steps by default, and later, how this behaviour can be modified.

24 The standard way of encoding characters

24.1 Phase 1: Parsing XML, and the internal representation

Most of the character data are read from the XML files containing the UI definition, but some strings are also dynamically
added by the program (e.g. read from a database, or another background store). The XML data are parsed, and the result
is an in-memory representation as XML tree. This tree can be seen as a reference point of the various recoding steps as it
expresses what is meant. This becomes clearer by an example:

<ui:variable name="company">
<ui:string-value>Meyer &amp; Son</ui:string-value>

</ui:variable>

This literal XML fragment is parsed, and represented as a tree:

|
ui:variable

|
+-- attribute "name" has value "company"
+-- ui:string-value

|
+-- text "Meyer & Son"

Especially, the ampersand is now represented as ampersand, and does not need any escaping notation.

Of course, there are many more data structures than just XML trees. We have declared a variable here, and this creates
a container for the variable. The important point is that the initial value of the variable can be directly taken from the
XML tree, here it is "Meyer & Son". If the value is later changed (e.g. overwritten by some database record), no encoding
changes are necessary. The general idea is that the internal representation never escapes characters.

71



WDialog Manual WDialog / Reference / Output encodings

24.2 Phase 2: Internal processing

In order to get HTML output, the XML tree needs to be transformed, for example, template calls must be expanded. The
transformation never changes the way character data are encoded.

24.3 Phase 3: Writing the HTML output

The result of the transformation step is an HTML tree that must be written as text stream. There are essentially two major
cases:

• Element context:This simply means that the HTML node to write occurs within an outer HTML node as sub
element. HTML tags are printed with the normal tag syntax:<tag>...</tag>. Character data are HTML-escaped,
i.e. < is printed as&lt; etc.

For example, this HTML tree

|
b
|
+-- text "Meyer & Son"

is printed as

<b>Meyer &amp; Son</b>

It is also possible that the HTML node has attributes. These are HTML-escaped, too, e.g. if thevalue attribute has
the value"Meyer & Son", the wholeinput element is printed as:

<input type="button" value="Meyer &amp; Son">

• Attribute context:Here, the HTML node to write occurs inside the attribute value of an outer HTML node. What?
Well, this is a consequence of the template expansion algorithm. For example:

<ui:template name="bold_meyer">
<b>Meyer &amp; Son</b>

</ui:template>
...
<ui:template name="make_button" from-caller="value">

<input type="button" value="$value"/>
</ui:template>
...
<t:make_button>

<p:value><t:bold_meyer/></p:value>
</t:make_button>

Here, the HTML subtree<b>Meyer &amp; Son</b> is finally inserted as the value of thevalue attribute! The tree
looks like:

72



WDialog Manual WDialog / Reference / Output encodings

|
input
|
+-- attribute "type" has value "button"
+-- attribute "value":

|
+-- b

|
+-- text "Meyer & Son"

This case is handled in two steps. First, the HTML subtree within the attribute is linearized into a single string.
Second, the string is printed as attribute, and this is the same algorithm as above, i.e. HTML meta characters are
escaped.

Linearization: HTML elements are printed in tag notation. Text nodes are simply left as they are, i.e.no HTML-
escaping happens in this step.

In the example, the result of the linearization is the string"<b>Meyer & Son</b>", and this string is printed as
attribute, leading to the final result

<input type="button" value="&lt;b&gt;Meyer &amp; Son &lt;/b&gt;">

I know that it is a bit surprising that this case exists, but I think it is treated in a straight-forward way.

25 How to modify the way output is encoded

25.1 Forcing the algorithm for attribute context

One drawback of the normal output encoding is that it is impossible to generate raw HTML dynamically. Imagine you
have a database containing HTML pages. How do you include the pages into your generated output?

Let us assume the variablehtml_page contains the page. If you include it by

<ui:dynamic variable="html_page"/>

the ui:dynamic statement expands to a text node, and the normal encoding escapes all HTML meta characters. The result
is that the browser displays the code of the page as such, but does not interpret it.

It is possible to force the algorithm that is used for attribute context. The important point is that this algorithm does not
escape within text nodes. Theui:special(→ 156) element selects this algorithm, e.g.

<ui:special>
<ui:dynamic variable="html_page"/>

</ui:special>

Now the HTML meta characters are left as they are, without any escaping. The browser interprets the HTML code.

73



WDialog Manual WDialog / Reference / Output encodings

25.2 Additional output encodings

The HTMLpre tag preserves the formatting of the inner character block. Sometimes it would be nice to simulate the effect
of pre without using it, by replacing spaces with&nbsp;, newlines with<br>, and by expanding tabs. Theui:encode(→
106) element allows one to add an escaping algorithm to the current active set of encoders:

<ui:encode enc="pre">
This is the first line.
Second line.
</ui:encode>

The two lines are first encoded by the HTML-escaping algorithm, the default algorithm. The ui:encode element takes the
result of this, and appliespre-style escaping to it. The printed HTML code is:

This&nbsp;is&nbsp;the&nbsp;first&nbsp;line.<br>
Second&nbsp;line.<br>

Another example: You want to generate a Javascript function that pops up an alert box on the screen:

<ui:template name="alert" from-caller="body">
<script type="text/javascript">

<ui:special>
window.alert("${body/js}");

</ui:special>
</script>

</ui:template>

The ui:special element makes that HTML-escaping is turned off. The/js notation applies thejs encoding to the value
of body. This encoding escapes characters that cannot occur in Javascript strings literally, e.g. the quotation mark itself.

25.3 The list of defined output encodings

The following names can be used in ui:encode, and when expanding parameters (${param/encname}) and in bracket
expressions ($[expr/encname]):

• html: The HTML-escaping algorithm substitutes&lt; for <, &gt; for >, &quot; for ", and&amp; for &.

• pre: This encoding substitutes&nbsp; for spaces,<br> for newline characters, and expands tabs (tab width is 8).

• para: Multiple newline characters are replaced by<p>.

• js: The characters\, ", ’, <, % and control characters are escaped according to the Javascript rules such that the
string can be used inside a Javascript string literal.

• jslong: A problem ofjs is that Javascript interpreters do not like long lines. To be on the safe side,jslong should
be used instead. It puts"+\n+" sequences into the string to avoid that the resulting lines become too long.

74



WDialog Manual WDialog / Reference / Output encodings

You can define your own encodings by calling the methodadd_output_encoding of the application object.

The encodings can be referred to at a number of places:

• ui:encode:The elementui:encode(→ 106) applies the encoding to what is printed for the subelements.

• Parameters:The syntax${param/enc} applies the encodingenc to the value of the template parameterparam.

• Bracket expressions:The syntax$[expr/enc] applies the encodingenc to the result of thebracket expression(→
176)expr.

75



Processing instructions

Web Path: WDialog / Reference / Processing instructions

26 Processing instructions

Processing instructions can be used to modify the way the UI definition is interpreted. Currently, all processing instruc-
tions must be directly contained in theui:application(→ 86) element.

• <?wd-debug-mode?>: In debug mode, the generated HTML code contains a number of comments showing the
current state of the dialog. Although these comments are not rendered by browsers, you can view them by selecting
the "View source code" function of the browser.

The state is shown as a long XML expression, even including some inner comments to improve the readability.
There are two styles to encode the XML expression:

– <?wd-debug-mode partially-encoded?>: This is style is intended for browsers that do not decode text
occuring in comments (e.g. Internet Explorer, Mozilla). Only "-->" is converted to "==>" to avoid that the
outer comment is closed prematurely. This style is the default.

– <?wd-debug-mode fully-encoded?>: This is style is intended for browsers that do decode text within
comments (e.g. Netscape 4). The characters <, >, and & are converted to their escaped forms &lt;, &gt;,
and &amp;, respectively.

• <?wd-prototype-mode?>: In prototype mode, missing definitions for dialog classes are automatically added to
the universe of dialog classes. These definitions are "empty", i.e. nothing is done inprepare_page, and nothing
happens inhandle. The prototype mode is useful to design dialogs without changing the program.

• <?wd-onstartup-call-handle?>: This mode forces that thehandle method is called even if no event has been
recognized. Normally, thehandle method is not called in such cases.

When the application is started, i.e. the user has typed in the URL, there is no event, and because of this normally
the first action is to prepare the first page to display. This processing instruction changes the behaviour, and the first
invoked method ishandle, followed byprepare_page.

Another possible situation is that Javascript statements submit the current form, and the WDialog routines do not
detect that one of the defined events (from ui:button elements etc.) have happened. Normally, the invocation of
handle is omitted unless this processing instruction forces its execution.

76



The UI language

Web Path: WDialog / Reference / The UI language

27 The UI Language

The UI language is defined in terms of XML-1.0. The subsections explain every element in detail; together they cover the
complete DTD of the language.

27.1 The hierarchy of the UI elements

The following picture shows the hierarchy.The picture is active,you can click at the elements to go immediately to their
descriptions!

27.2 Other syntactic objects

For many reasons, the aboveui:name elements are not the best choice for every kind of notation. Because of this, a
number of further syntactic objects have been defined:

• t:*, q:*, and p:* (→ 173) (Elements like<t:name>, <q:name>, and<p:name>)

• l:* (→ 174) (Elements like<l:name>)

• $param(→ 175) (Template parameters)

• $[expr] (→ 176) (Bracket expressions)

• Dot notation (v1.v2)(→ 180)

27.3 The semantic levels, and the incompleteness of the formal declarations

The elements shown in picture 5 belong to one of three semantic levels. The topmost elementui:application and its
children are the elements that determine thedialog structure, i.e. which dialogs exist, and what are their static properties.
The elements insideui:page are eithergenerative elements, or control structures. The former generate output directly,
while the latter control the expansion process (e.g. "if" conditions).

I have tried to give a formal XML declaration for every element. Unfortunately, the XML DTDs are not powerful enough
to specify the relations between the elements fully. I found a number of problems, and they are often related to difficulties
how to describe the relations between the semantic levels.

Many control structures are declared with a content model ofANY, i.e. the DTD does not restrict the type of the children
elements. There are actually two reasons for this. First, the replacement forANY would be an enumeration of all control
structures, and all generative elements. But the latter are not completely known for the scope of the UI language, as all
HTML elements are generative, too, and it is intentionally avoided to include HTML as sublanguage into the UI language.

The second reason is that the relations between control structures and generative elements cannot be expressed by the
DTD. The control structures are evaluated at expansion time, and change the order of the generative elements dynamically.
For example, is it allowed that theTD HTML element is a child ofui:template, a control structure? This depends on
where the template is called. If this happens insideTR, the usage of the template will be legal becauseTD must finally

77



WDialog Manual WDialog / Reference / The UI language

Picture 5: The element hierarchy

ui:param

ui:iter−head

ui:iter−foot

ui:iter−separator

ui:iter−empty

ui:context

ui:param

ui:application

ui:dialog

ui:enumeration

ui:enum

ui:string−value

ui:enum−value ui:alist−value

ui:enum−item

ui:dyn−enum−value

ui:alist−item

ui:dyn−enum−item

ui:page

ui:template

ui:default

ui:use

ui:enumerate

ui:iterate

ui:param

− ui:server−popup

− ui:form
− ui:button
− ui:imagebutton
− ui:checkbox
− ui:radio
− ui:translate
− ui:file
− ui:text
− ui:password
− ui:select
− ui:textarea
− ui:a
− ui:special
− ui:if
− ui:cond

− ui:popup

ui:ifvar ui:iflang
ui:true ui:false

ui:variable

− ui:dynamic

ui:richbutton

− any HTML element
− ui:encode
− ui:ifexpr

78



WDialog Manual WDialog / Reference / The UI language

occur insideTR according to the HTML language. However, this condition cannot be expressed in a DTD. You need the
power of a type system to check the validity of element relations across semantic levels.

Note that even the attribute declarations are incomplete. Often, the elements of the UI language are only variants of the
corresponding fundamental HTML elements. For example, theui:button element generates anINPUT HTML element
with TYPE=SUBMIT. Of course, it is allowed to add HTML attributes such asCLASS or ONCLICK to ui:button as they
can be simply copied to the generatedINPUT element. In the declarations, these HTML attributes are omitted to avoid
dependencies on certain HTML versions.

In the following sections, the semantic level of the element is given in addition to the formal declaration. This helps a lot
to find out where (and how) an element can be used: Both control structures and generative elements can only be used in
page context, i.e. when the creation of an output page is described. The control structures determine the algorithm how
the generative elements are arranged. Finally, the page consists only of generative elements, and these must have a sound
structure that is correct with respect to the HTML definition.

79



ui:a

Web Path: WDialog / Reference / The UI language / ui:a

28 The element ui:a

This element displays a hyperlink referring to a position or function within the application. The generated HTML code
consists of anA element with a "javascript:..."href, and some hidden fields which are set from the Javascript code bound
to the hyperlink. When the hyperlink is clicked, these fields are filled, and the form is submitted. The system recognizes
that the hyperlink has been clicked by checking for these special fields.

Note: This element works only for browsers which are capable of executing Javascript code!

When the user clicks on the hyperlink, ahyperlinkevent is generated (unless theindex attribute is specified; see below);
the handle callback method of the dialog object can check whether the current event is the event associated with this
hyperlink, and the method can execute code depending on the result of this check. For a description of possible events see
Events(→ 41). The following example illustrates hyperlink events:

<ui:dialog name="sample" start-page="p1">
<ui:page name="p1">

<html>
<body>

<h1>Hyperlink test</h1>
This is a <ui:a name="b">hyperlink</ui:a>.

</body>
</html>

</ui:page>
</ui:dialog>

Here, the hyperlink event has the name "b". In order to check whether this event occured in thehandle method, the
following piece of code is recommended. Note that hyperlink events are actually handled in exactly the same way as
button events. O’Caml:

method handle() =
match self # event with

Button "b" -> (* yes, it’s also Button for hyperlinks! *)
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {
my ($self) = @_;
my ($e, $name) = $self->event;
if ($e eq ’BUTTON’ && $name eq ’b’) { # "BUTTON" works also for hyperlinks

80



WDialog Manual WDialog / Reference / The UI language / ui:a

... # Do whatever you want to do
} elsif ... # other cases
;
return undef;

}

If the ui:a element sets theindex attribute, the hyperlink is identified by the pair(name,index). When the user clicks
on such an indexed link, anindexed hyperlinkevent is generated. The index value can be used to distinguish between
several instances of hyperlinks of the same type. For instance, a book store may offer the customer several books:

<ui:dialog name="sample" start-page="view_records">
<ui:page name="view_records">

<html>
<body>

<h1>View books</h1>
<table>
<tr>

<th>Author</th>
<th>Title</th>
<th>Action</th>

</tr>
<tr>

<td>Damon Runryon</td>
<td>Guys and Dolls</td>
<td><ui:a name="view" index="4523">View Details</ui:a></td>

</tr>
<tr>

<td>William S. Burroughs</td>
<td>Naked Lunch</td>
<td><ui:a name="view" index="8612">View Details</ui:a></td>

</tr>
</table>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the index value is the database ID of the record. The typical code to check for such a hyperlink in thehandle
callback is - O’Caml:

method handle() =
match self # event with

Indexed_button("view", index) ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

81



WDialog Manual WDialog / Reference / The UI language / ui:a

sub handle {
my ($self) = @_;
my ($e, $name, $index) = $self->event;
if ($e eq ’INDEXED_BUTTON’ && $name eq ’view’) {

... # Do whatever you want to do
} elsif ... # other cases
;
return undef;

}

Note that the transport mechanism for the strings specified for name and/or index is 8 bit clean (at least ifcgi="auto").
This means that the name and index strings may be composed of all characters of the character set.

28.1 Declaration

Level: Generative

<!ELEMENT ui:a ANY>
<!ATTLIST ui:a

name NMTOKEN #REQUIRED
index CDATA #IMPLIED
goto NMTOKEN #IMPLIED
cgi (auto|keep) "auto"

>

Additionally, ui:a must only occur insideui:form. ui:a must not contain anotherui:a element.

28.2 Attributes

The following attributes have a special meaning:

• name:Specifies the name of the hyperlink.

• index: Specifies the index value of the link. If this attribute is present, the hyperlink becomes an indexed link;
otherwise the hyperlink is a plain link.

• goto: Specifies which page is the next page if the hyperlink is clicked. The variable containing the next page is
initialized with the name specified here before thehandle method is invoked. This means that the action of the link
is to go to this page, unless the action is overridden in thehandle method.

• cgi: The value "auto" means that the name of the CGI variable associated with the hyperlink is selected automat-
ically. This works perfectly unless you want to refer to this variable from Javascript or from some other manually
written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isanchor_
concatenated with the name of the link. However, it is not allowed to specify "keep" if there is also an index
value. Furthermore, the hyperlink name should only contain alphanumeric characters, because not all punctuation
characters can be safely transported over the CGI protocol.

82



WDialog Manual WDialog / Reference / The UI language / ui:a

If there are any other attributes, these are added to the generatedA HTML element. This means that especially the
onclick, onmouseover, andonmouseout attributes may be specified. It is possible to set also thetarget value, but I do
not recommend this (it may have strange effects).

28.3 Sub elements

The contents ofui:a are rendered as hyperlink zone.

28.4 Generated HTML code

Theui:a element generates HTML code which roughly looks as follows:

<a href="javascript:...">...</a>
<input type="hidden" name="..." value="...">

83



ui:alist-value and ui:alist-item

Web Path: WDialog / Reference / The UI language / ui:alist-value and ui:alist-item

29 The elements ui:alist-value and ui:alist-item

The elementui:alist-value represents a literal for associative lists that can be used to set the initial value of a
ui:variable (→ 170). The elementui:alist-item represents one association pair.

29.1 Declaration

Level: Dialog structure

<!ELEMENT ui:alist-value (ui:alist-item)* >

<!ELEMENT ui:alist-item %value-literal; >

<!ATTLIST ui:alist-item
index CDATA #REQUIRED>

For the definition of%value-literal; seeui:variable (→ 170).

Restriction: All items must contain literals of the same type. Furthermore, it is (currently) not allowed that an item
contains anotheralist-value.

29.2 Attributes

• index: The index of the item.

29.3 Sub elements

Theui:alist-item contains the literal that corresponds to theindex

29.4 Example

<ui:enumeration name="fruit">
<ui:enum internal="apple" external="I like apples"/>
<ui:enum internal="orange" external="I like oranges"/>
<ui:enum internal="banana" external="I like bananas"/>

</ui:enumeration>

<ui:variable name="preference" type="fruit" associative="yes">
<ui:alist-value>

84



WDialog Manual WDialog / Reference / The UI language / ui:alist-value and ui:alist-item

<ui:alist-item index="John">
<!-- John’s preferred fruit: -->
<ui:enum-value>

<ui:enum-item internal="orange"/>
<ui:enum-item internal="banana"/>

</ui:enum-value>
</ui:alist-item>
<ui:alist-item index="Mary">

<!-- Mary’s preferred fruit: -->
<ui:enum-value>

<ui:enum-item internal="apple"/>
<ui:enum-item internal="banana"/>

</ui:enum-value>
</ui:alist-item>

</ui:alist-value>
</ui:variable>

85



ui:application

Web Path: WDialog / Reference / The UI language / ui:application

30 The element ui:application

This is the top-level element of an application. It contains allui:dialog (→ 98) andui:template(→ 158) elements.

30.1 Declaration

Level: Dialog structure

<!ELEMENT ui:application ( ui:dialog | ui:template )+ >

<!ATTLIST ui:application
start-dialog NMTOKEN #REQUIRED

>

30.2 Attributes

• start-dialog:This required attribute determines the start dialog of the application, i.e. the dialog to create first when
the user starts the application (enters its URL into the browser).

30.3 Example

<ui:application start-dialog="main">
<ui:dialog name="main" start-page="portal">

<ui:page name="portal">
<html>

<body>
<h1>This is the first page of the application!</h1>

</body>
</html>

</ui:page>
</ui:dialog>

</ui:application>

86



ui:button

Web Path: WDialog / Reference / The UI language / ui:button

31 The element ui:button

This element displays a button. The generated HTML code consists of anINPUT element withTYPE=SUBMIT, whosename
attribute is set to a special identifier which is recognized by the system when the form is submitted.

When the user clicks on the button, aButton event is generated (unless theindex attribute is specified; see below); the
handle callback method of the dialog object can check whether the current event is the event associated with this button,
and the method can execute code depending on the result of this check. For a description of possible events seeEvents
(→ 41). The following example illustrates button events:

<ui:dialog name="sample" start-page="p1">
<ui:page name="p1">

<html>
<body>

<h1>Button test</h1>
This is a <ui:button name="b" label="Button"/>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the button event has the name "b". In order to check in thehandle method whether this event occured, the following
piece of code is recommended. O’Caml:

method handle =
match self # event with

Button "b" ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {
my ($self) = @_;
my ($e, $name) = $self->event;
if ($e eq ’BUTTON’ && $name eq ’b’) {

... # Do whatever you want to do
} elsif ... # other cases
;
return undef;

87



WDialog Manual WDialog / Reference / The UI language / ui:button

}

If theui:button element has theindex attribute, the button is identified by the pair(name,index). When the user clicks
on such an indexed button, anIndexed_button event is generated. The index value can be used to distinguish between
several instances of buttons of the same type. For example, a book store may offer the customer several books:

<ui:dialog name="sample" start-page="view_records">
<ui:page name="view_records">

<html>
<body>

<h1>View books</h1>
<table>
<tr>

<th>Author</th>
<th>Title</th>
<th>Action</th>

</tr>
<tr>

<td>Damon Runryon</td>
<td>Guys and Dolls</td>
<td><ui:button name="view" label="View Details" index="4523"/></td>

</tr>
<tr>

<td>William S. Burroughs</td>
<td>Naked Lunch</td>
<td><ui:button name="view" label="View Details" index="8612"/></td>

</tr>
</table>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the index value is the database ID of the record. The typical code to check for such a button in thehandle callback
is - O’Caml:

method handle =
match self # event with

Indexed_button("view", index) ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {
my ($self) = @_;
my ($e, $name, $index) = $self->event;

88



WDialog Manual WDialog / Reference / The UI language / ui:button

if ($e eq ’INDEXED_BUTTON’ && $name eq ’view’) {
... # Do whatever you want to do

} elsif ... # other cases
;
return undef;

}

Note that the transport mechanism for the strings specified for name and/or index is 8 bit clean (at least if cgi="auto").
This means that the name and index strings may be composed of all characters of the character set.

31.1 Declaration

Level: Generative element

<!ELEMENT ui:button EMPTY>
<!ATTLIST ui:button

name NMTOKEN #REQUIRED
index CDATA #IMPLIED
label CDATA #IMPLIED
goto NMTOKEN #IMPLIED
cgi (auto|keep) "auto"

>

Additionally, ui:button must occur insideui:form.

31.2 Attributes

The following attributes have a special meaning:

• name: Specifies the name of the button.

• index: Specifies the index value of the button. If this attribute is present, the button becomes an indexed button;
otherwise the button is a plain button.

• label: Specifies the text appearing on the button.

• goto: Specifies which page is the next page if the button is pressed. The variable containing the next page is
initialized with the name specified here before thehandle method is invoked. This means that the action of the
button is to go to this page, unless the action is overridden in thehandle method.

• cgi: The value "auto" means that the name of the CGI variable associated with the button is selected automatically.
This works perfectly unless you want to refer to this variable from Javascript or from some other manually written
event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isbutton_ concatenated
with the name of the button. However, it is not allowed to specify "keep" if there is also an index value. Furthermore,
the button name should only contain alphanumeric characters, because not all punctuation characters can be safely
transported over the CGI protocol.

If there are any other attributes, these are added to the generatedINPUT HTML element. This means that especially the
onclick attribute may be specified.

89



WDialog Manual WDialog / Reference / The UI language / ui:button

31.3 Sub elements

ui:button elements do not have sub elements.

31.4 Generated HTML code

Theui:button element generates HTML code which roughly looks as follows:

<input type="SUBMIT" name="..." value="...">

90



ui:checkbox

Web Path: WDialog / Reference / The UI language / ui:checkbox

32 The element ui:checkbox

This element displays a checkbox. The generated HTML code consists of anINPUT element withTYPE=CHECKBOX, whose
name attribute is set to a special identifier which is recognized by the system when the form is submitted.

The checkbox must be tied to an enumerator variable (either a declared one, or a dynamic enumerator); the name of the
variable must be specified in thevariable attribute. Furthermore, there must be avalue attribute determining which
value is visualized by the checkbox. The rule is as follows: The checkbox is in the state "checked" iff the specified value
occurs in the set of values currently stored in the specified variable.

The checkbox widget will be initialized to the state given by this rule when the current page is displayed. Furthermore, any
state change of the widget caused by user interaction will be propagated back to the enumerator variable when the current
page is submitted. This means that if the user checks the box the specified value will be added to the specified enumerator,
and that conversely if the user releases the box the specified value will be deleted from the specified enumerator variable.
However, other members of the enumerator variable than the specified one remain unchanged.

Of course, the specified value is an internal value with respect to the difference between internal and external values.

In the following example, the customer can select which kind of fruit he orders. The variablecustomer_wish is initialized
with the set {"apple"}, and because of this, the page appears initially with a checked "apple" box and unchecked "banana"
and "ananas" boxes. The checkboxes simply visualize the current state of the variable. When the customer has selected
his items and presses the "OK" button, the variablecustomer_wish is automatically updated from the state of the input
widgets, and reflects again the current state of the boxes. From thehandle callback method, one can read the variable
customer_wish and interpret the contents.

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="fruit">

<ui:enum internal="apple" external="Apple"/>
<ui:enum internal="banana" external="Banana"/>
<ui:enum internal="ananas" external="Ananas"/>

</ui:enumeration>

<ui:variable name="customer_wish" type="fruit">
<ui:enum-value>

<ui:enum-item internal="apple"/>
</ui:enum-value>

</ui:variable>

<ui:page name="sample_page">
<html>

<body>
Please select what you want:
<ul>
<li><ui:checkbox variable="customer_wish" value="apple"/>

Apples</li>
<li><ui:checkbox variable="customer_wish" value="banana"/>

91



WDialog Manual WDialog / Reference / The UI language / ui:checkbox

Bananas</li>
<li><ui:checkbox variable="customer_wish" value="ananas"/>

Ananas</li>
</ul>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

32.1 Declaration

Level: Generative

<!ELEMENT ui:checkbox EMPTY>
<!ATTLIST ui:checkbox

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
value NMTOKEN #REQUIRED
cgi (auto|keep) "auto"

>

Additonally,ui:checkbox must only occur insideui:form.

32.2 Attributes

The following attributes have a special meaning:

• variable: Specifies the variable of the current dialog object to which the checkbox is tied. Unless theindex
attribute is present, the variable must be a declared enumerator or a dynamic enumerator. If there is anindex
attribute, the variable must be an associative list of either declared or dynamic enumerators.

• index: Specifies the index value of the element of the associative variable to which the checkbox is tied.

• value: Specifies the internal value whose presence in the enumerator is represented by the checkbox.

• cgi: The value "auto" means that the name of the CGI variable associated with the checkbox is selected automat-
ically. This works perfectly unless you want to refer to this variable from Javascript or from some other manually
written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isvar_ con-
catenated with the name of the variable. However, it is not allowed to specify "keep" if there is also an index value.
Furthermore, the variable name should only contain alphanumeric characters, because not all punctuation characters
can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedINPUT HTML element. This means that especially the
onclick attribute may be specified.

32.3 Sub elements

ui:checkbox does not have sub elements.

92



WDialog Manual WDialog / Reference / The UI language / ui:checkbox

32.4 Tips

Often, it is desired to iterate over all defined values of an enumerator, and to output a checkbox for every item. The
following code demonstrates howui:checkbox works in conjunction withui:enumerate(→ 108); it is a another version
of the fruit example:

<ui:template name="list_item" from-caller="int ext">
<li>

<ui:checkbox variable="customer_wish" value="$int"/> $ext
</li>

</ui:template>

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="fruit">

<ui:enum internal="apple" external="Apple"/>
<ui:enum internal="banana" external="Banana"/>
<ui:enum internal="ananas" external="Ananas"/>

</ui:enumeration>

<ui:variable name="customer_wish" type="fruit">
<ui:enum-value>

<ui:enum-item internal="apple"/>
</ui:enum-value>

</ui:variable>

<ui:page name="sample_page">
<html>

<body>
Please select what you want:
<ul>
<ui:enumerate template="list_item"

type="fruit"/>
</ul>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

93



ui:cond

Web Path: WDialog / Reference / The UI language / ui:cond

33 The element ui:cond

This element contains several conditional branches. The first branch whose condition code evaluates totrue is expanded.
If no branch istrue, nothing will be expanded.

33.1 Declaration

Level: Control structure

<!ELEMENT ui:cond ( (ui:if | ui:ifexpr | ui:ifvar | ui:iflang | ui:true | ui:false)+
)>

33.2 Sub elements

The following sub elements are possible. All are conditional elements setting the condition code.

• ui:if (→ 119)

• ui:ifexpr (→ 121)

• ui:ifvar (→ 124)

• ui:iflang (→ 122)

• ui:true (→ 167)

• ui:false(→ 113)

33.3 Example

<ui:cond>
<ui:ifvar variable="v" value="1">

...branch 1...
</ui:ifvar>
<ui:ifvar variable="v" value="2">

...branch 2...
</ui:ifvar>
<ui:true>

...branch 3...
</ui:true>

</ui:cond>

94



WDialog Manual WDialog / Reference / The UI language / ui:cond

If the variablev has the value 1, the first branch will be expanded. If it has the value 2, the second branch will be expanded.
In all other cases, the third branch will be expanded.

33.4 Hints

There is a certain order in which the various types of expansions are performed. First, template parameters and bracket
expressions are evaluated and replaced by the resulting values. After that, the conditions are tested, and the right con-
ditional branches are selected. This particular order may lead to problems when the test conditions are used to ensure
preconditions of expressions, like in:

<ui:if value1="$x" value2="0" op="int-gt">
$[div(100,$x)] <!-- Runtime Error! -->

</ui:if>

Here, the division is carried out before the test whether$x is positive, and because of this a runtime error can happen. The
solution is to put the bracket expression into a template, as templates are expanded only on demand:

<ui:template name="divide" from-caller="x">
$[div(100,$x)]

</ui:template>

...

<ui:if value1="$x" value2="0" op="int-gt">
<t:divide x="$x"/>

</ui:if>

95



ui:context

Web Path: WDialog / Reference / The UI language / ui:context

34 The element ui:context

This elements extends the set of current context parameters while the body ofui:context is expanded. Context parame-
ters are one way to pass values totemplates(→ 49).

If a parameter is added to the context byui:context, but it happens that a parameter with the same name is already
member of the context, the existing member is suspended for the time the body ofui:context is expanded, and the new
parameter becomes part of the context instead.

34.1 Declaration

Level: Control structure

<!ELEMENT ui:context ANY >

The subelements ofui:context must match the informal rule( ui:param*, %context-body;* ) where
%context-body; stands symbolically for the sub elements of the body. Note that whitespace between the
%context-body; elements counts, but at the other places it does not count.

34.2 Sub elements

The ui:param (→ 140) subelements must be placed at the beginning of the inner nodes. For everyui:param a new
parameter is added to the context.

The elements followingui:param are thebodyof ui:context.

96



ui:default

Web Path: WDialog / Reference / The UI language / ui:default

35 The element ui:default

The element can be used at the beginning ofui:page(→ 135) andui:template(→ 158) to define default values for template
parameters that are not passed to the template.

35.1 Declaration

Level: Control structure

<!ELEMENT ui:default ANY>

<!ATTLIST ui:default
name NMTOKEN #REQUIRED

>

35.2 Attributes

• name: The name of the parameter

35.3 Sub elements

All page body elements may occur inui:default.

35.4 Known Bug

Template parameters insideui:default are currently not expanded. This is likely to change in the future.

Example that does not work yet:

<ui:template name="foo" from-caller="a b">
<ui:default name="a">44</ui:default>
<ui:default name="b">$a + $a = 88</ui:default>
...

</ui:template>

97



ui:dialog

Web Path: WDialog / Reference / The UI language / ui:dialog

36 The element ui:dialog

An ui:dialog element describes the object behind a series of interactions (dialog (→ 22)) that base on shared state
variables. The object has the following properties:

• The object consists of a number of instance variables. These variables must be declared with theui:variable (→
170) directive. Every variable has a type and a value. It is possible to set a default value to which the variable is
initialized when the object is being created.

• The object can be visualized as one of the defined pages (seeui:page (→ 135)). The elements describing the
visualization can access the instance variables of the object, either reading them only (such as inui:dynamic(→
102)), or associating them with interactor elements which can be modified by the user of the application (such as in
ui:text (→ 160)).

• The object remembers which page has been displayed last; this page is called the current page.

• When the user clicks on a hyperlink (seeui:a (→ 80)) or on a button (seeui:button (→ 87)), an event is triggered
and sent to the object.

The programmer can associate an O’Caml or Perl class to the object, and this class is then treated as extension to the
default behaviour of the object. You can find detailed descriptions of the dialog properties in the chapter aboutdialogs
(→ 22).

36.1 Declaration

Level: Dialog structure

<!ELEMENT ui:dialog ( ( ui:enumeration |
ui:variable |
ui:context |
ui:page )* ) >

<!ATTLIST ui:dialog
name NMTOKEN #REQUIRED
start-page NMTOKEN #REQUIRED
lang-variable NMTOKEN #IMPLIED

>

Restrictions: There must at most only oneui:context sub element. There must be at least theui:page mentioned by
start-page.

98



WDialog Manual WDialog / Reference / The UI language / ui:dialog

36.2 Attributes

• name: The name of the object which must be unique among all objects of the application.

• start-page: The name of the page to which the current page property is initialized when the object is created.

• lang-variable: The name of a string variable that contains the selected language. It is required that this variable
is declared byui:variable. For more information, see the chapterInternationalization(→ 67).

36.3 Sub elements

The following sub elements may be contained inui:dialog in arbitrary order:

• ui:enumeration(→ 111): Declarations of enumerator types

• ui:variable (→ 170): Declarations of instance variables

• ui:context(→ 96): Optionally, a default binding for dynamic template parameters

• ui:page(→ 135): One or more pages describing possible visualizations of the dialog. At least the page defined by
start-page must exist.

36.4 Example

<ui:dialog name="name_dialog" start-page="change_name">
<ui:variable name="first_name" type="string"/>
<ui:variable name="last_name" type="string"/>

<ui:page name="change_name">
<html>

<body>
<h1>Please enter your name here:</h1>

<table>
<tr>

<td>First name:</td>
<td><ui:text variable="first_name"/></td>

</tr>
<tr>

<td>Last name:</td>
<td><ui:text variable="last_name"/></td>

</tr>
</table>

<p><ui:button name="name_changed" label="Done" goto="show_name"/></p>
</body>

</html>
</ui:page>

<ui:page name="show_name">
<html>

99



WDialog Manual WDialog / Reference / The UI language / ui:dialog

<body>
<h1>Welcome!</h1>

Welcome, <ui:dynamic variable="first_name"/>
<ui:dynamic variable="last_name"/>!

</body>
</html>

</ui:page>
</ui:dialog>

100



ui:dyn-enum-value and ui:dyn-enum-item

Web Path: WDialog / Reference / The UI language / ui:dyn-enum-value and ui:dyn-enum-item

37 The elements ui:dyn-enum-value and ui:dyn-enum-item

The elementui:dyn-enum-value represents a literal for dynamic enumerators that can be used to set the initial value of
aui:variable (→ 170). The elementui:dyn-enum-item represents one enumerated item.

37.1 Declaration

Level: Dialog structure

<!ELEMENT ui:dyn-enum-value (ui:dyn-enum-item)* >

<!ELEMENT ui:dyn-enum-item EMPTY>

<!ATTLIST ui:dyn-enum-item
internal NMTOKEN #REQUIRED
external CDATA #IMPLIED >

37.2 Attributes

• internal: The internal value identifying the enumerated item

• external: The corresponding external value for display purposes. If omitted, the internal value is also used as
external value.

37.3 Example

<ui:variable name="preference" type="dynamic-enumerator">
<ui:dyn-enum-value>

<ui:dyn-enum-item internal="orange" external="I like oranges"/>
<ui:dyn-enum-item internal="banana" external="I like bananas"/>

</ui:dyn-enum-value>
</ui:variable>

101



ui:dynamic

Web Path: WDialog / Reference / The UI language / ui:dynamic

38 The element ui:dynamic

The elementui:dynamic is replaced by the current value of the variable it refers to. The replacement algorithm can quote
the value according to several quoting styles; see below.

One task ofui:dynamic is to show the values of variables as constant, immutable texts. For example, the following
dialog displays the values of the current data fields in the pageshow_record:

<ui:dialog name="sample" start-page="show_record">
<ui:variable name="title"/>
<ui:variable name="author"/>
<ui:variable name="isbn"/>
<ui:variable name="price"/>

<ui:page name="show_record">
<html>

<body>
<h1>The selected record</h1>
<dl>
<dt>Title:</dt>
<dd><ui:dynamic variable="title"/></dd>
<dt>Author:</dt>
<dd><ui:dynamic variable="author"/></dd>
<dt>ISBN number:</dt>
<dd><ui:dynamic variable="isbn"/></dd>
<dt>price:</dt>
<dd><ui:dynamic variable="price"/></dd>

</dl>
</body>

</html>
</ui:page>

</ui:dialog>

Of course, one has to load the values into the displayed variables. This can be done in theprepare_page method of the
dialog object which is called just before the current page is printed as HTML document.

Another way to applyui:dynamic is to insert an already generated HTML fragment at the current location into the output
stream. In this case, the attributespecial must be set to indicate that the variable contains already HTML and that no
further quoting is required. A tiny example:

<ui:dialog name="sample" start-page="p">
<ui:variable name="x">

<ui:string-value>This is &lt;b&gt;bold&lt;/b&gt; text!</ui:string-value>

102



WDialog Manual WDialog / Reference / The UI language / ui:dynamic

</ui:variable>

<ui:page name="p">
<html>

<body>
The value of x:
<ui:dynamic variable="x" special="yes"/>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the variablex is initialized with the value "This is <b>bold</b> text!", and this value is verbatim included into the
generated HTML code.

38.1 Declaration

Level: Generative element

<!ELEMENT ui:dynamic EMPTY>
<!ATTLIST ui:dynamic

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
special (yes|no) "no"
enc NMTOKENS ""

>

38.2 Attributes

• variable: Specifies the name of the variable to display. This must be a string variable.

• index: Specifies the selected index if the variable is an associative string variable. This attribute is required if the
variable is associative.

• special: This attribute determines if the usual output encoding is applied (special="no") or not
(special="yes"). Normally, the characters <, >, &, and " in the generated HTML text are replaced by their
corresponding entities, so they are displayed "as they are meant". The attributespecial="yes" turns the output
encoding off (like the elementui:special(→ 156) for bigger sections of code).

• enc: Defines a list of additional output encodings that are appliedbefore the normal HTML output encoding.
SeeOutput encodings(→ 71) for a list of encodings. It is recommended to defineenc only in conjuction with
special="yes" to get full control over the order in which the encodings are applied.

38.3 Special case: Using ui:dynamic in parameter values

Or: How to set attributes dynamically

When ui:dynamic occurs in values of template parameters (i.e. withinui:param (→ 140)), the following behaviour can
be expected. If the parameter is referred to from character data context, the ui:dynamic element is just passed through to
the template expansion text as any other element. For example, if the template definition of t1 is

103



WDialog Manual WDialog / Reference / The UI language / ui:dynamic

<ui:template name="t1" from-caller="x">
The text is: <b>$x</b></ui:template>

and the template is called as in

<ui:use template="t1">
<ui:param name="x"><ui:dynamic variable="v"/></ui:param>

</ui:use>

the expanded template will be:

The text is: <b><ui:dynamic variable="v"/></b>

This is nothing special. However, it is also possible to use parameters in attribute context. In this case, the ui:dynamic
element will be immediately replaced by the (optionally quoted) contents of the called variable; this is different from most
other ui: elements which are just ignored in attribute context. If in our example t2 is defined as

<ui:template name="t2" from-caller="x">
<ui:button name="b_$x" label="Label of: $x"/></ui:template>

and called in the same way as t1, the expansion text will be computed as follows:

<ui:button name="b_<v>" label="Label of: <v>"/>

where <v> is replaced by the current contents of the variable v.

38.4 The bracket notation

Or: How to set attributes dynamically in a better way

In pages and templates, the notation$[name] can be used to insert the current value of the named instance variable, just
like ui:dynamic does. This notation can also be used inside atttibutes, so the last example can be better written as

<ui:button name="b_$[v]" label="Label of: $[v]"/>

To get the effect ofspecial="yes" you have to put the bracket into aui:special(→ 156) element:

<ui:special>$[v]</ui:special>

104



WDialog Manual WDialog / Reference / The UI language / ui:dynamic

To get the effect ofenc, just add the encodings after a slash, and separate them by slashes:

<ui:special>$[v/html/js]</ui:special>

In recent versions of WDialog, the bracket notation has been generalized, and it is now allowed to write more complex
expressions inside the brackets. See the chapter about$[expr] (→ 176).

105



ui:encode

Web Path: WDialog / Reference / The UI language / ui:encode

39 The element ui:encode

This element changes the output encoding for the time its sub elements are expanded. By default, WDialog uses thehtml
output encoding, as if the whole page were embraced by

<ui:encode enc="html">
...

</ui:encode>

The output encoding can be changed to a different style with this element. In particular, it is possible to add encodings
to the currently working list of encodings, so that in addition to thehtml encoding the encodings specified by theenc
attribute are in effect.

It is also possible to putui:encode insideui:special(→ 156) elements.

39.1 Declaration

Level: Control structure

<!ELEMENT ui:encode ANY>

<!ATTLIST ui:encode
enc NMTOKENS #REQUIRED>

39.2 Attributes

• enc: A space-separated list of encoding tokens. SeeOutput encodings(→ 71) for the defined tokens and their
meaning.

39.3 Sub elements

All page body elements may occur inui:encode.

106



ui:enum-value and ui:enum-item

Web Path: WDialog / Reference / The UI language / ui:enum-value and ui:enum-item

40 The elements ui:enum-value and ui:enum-item

The elementui:enum-value represents an enumerator literal that can be used to set the initial value of aui:variable (→
170). The elementui:enum-item represents one enumerated item.

40.1 Declaration

Level: Dialog structure

<!ELEMENT ui:enum-value (ui:enum-item)* >

<!ELEMENT ui:enum-item EMPTY>

<!ATTLIST ui:enum-item
internal NMTOKEN #REQUIRED>

40.2 Attributes

• internal: The internal value identifying the enumerated item

40.3 Example

<ui:enumeration name="fruit">
<ui:enum internal="apple" external="I like apples"/>
<ui:enum internal="orange" external="I like oranges"/>
<ui:enum internal="banana" external="I like bananas"/>

</ui:enumeration>

<ui:variable name="preference" type="fruit">
<ui:enum-value>

<ui:enum-item internal="orange"/>
<ui:enum-item internal="banana"/>

</ui:enum-value>
</ui:variable>

107



ui:enumerate

Web Path: WDialog / Reference / The UI language / ui:enumerate

41 The element ui:enumerate

This elements instantiates a template several times. It is possible to enumerate the members of a declared enumerator
type, and it is possible to enumerate the values of an enumerator variable (declared or dynamic). For every member the
template is expanded, and the resulting texts are concatenated.

41.1 $int and $ext

The element iterates over the members of the given type or variable. For every member, the referenced template is called,
and the lexical parameters$int and$ext identify the member. These parameters are always passed to the template (and
additionally, the parameters given byui:param, and the current context parameters are passed, too).

The parameter$int is set to the internal value of the member, and the parameter$ext is set to the corresponding external
value of the member while the template is being expanded for the corresponding member.

41.2 Declaration

Level: Control structure

<!ELEMENT ui:enumerate ( ( ui:param )*,
( ui:iter-empty )?,
( ui:iter-head )?,
( ui:iter-foot )?,
( ui:iter-separator )?

)
>

<!ATTLIST ui:enumerate
template NMTOKEN #REQUIRED
type NMTOKEN #IMPLIED
variable NMTOKEN #IMPLIED
index CDATA #IMPLIED

>

41.3 Attributes

• template: Names the template to instantiate. Note that the current language of the dialog may also influence which
template is selected.

• type: The type to enumerate. There must be anui:enumeration(→ 111) for this type. Iftype is present, neither
variable norindex must be specified.

108



WDialog Manual WDialog / Reference / The UI language / ui:enumerate

• variable: Selects the variable containing the enumerated values. This variable must be either a declared or a
dynamic enumerator. Ifvariable is present, the attributetype must not be specified.

• index: If the variable is an associative list over enumerators, this attribute selects the component to use.

41.4 Sub elements

• ui:param(→ 140): Passes additional lexical parameters to the called template.

• ui:iter-empty (→ 131): If existing, and if the iterated variable is empty, the nodes belowui:iter-empty are
expanded instead of the template.

• ui:iter-head (→ 131): If existing, and the iterated variable is non-empty, the nodes belowui:iter-head are
prepended to the concatenated template instances.

• ui:iter-foot (→ 131): If existing, and the iterated variable is non-empty, the nodes belowui:iter-foot are ap-
pended to the concatenated template instances.

• ui:iter-separator(→ 131): If existing, and the iterated variable contains more than one component, the nodes below
ui:iter-separator are placed between the template instances.

41.5 Example

<ui:dialog name="preferred-colors" start-page="input-color">
<ui:enumeration name="color">

<ui:enum internal="ff0000" external="red"/>
<ui:enum internal="00ff00" external="green"/>
<ui:enum internal="0000ff" external="blue/>

</ui:enumeration>

<ui:variable name="prefcol" type="color"/>

<ui:page name="input-color">
<html>

<body>
Select your preferred colors:
<ui:select variable="prefcol" multiple="yes"/>
<ui:button name="ok" label="OK" goto="print-color"/>

</body>
</html>

</ui:page>

<ui:page name="print-color">
<html>

<body>
You have selected:
<ui:enumerate variable="prefcol" template="print">
<ui:iter-empty>Nothing!</ui:iter-empty>
<ui:iter-sep>, </ui:iter-sep>

</ui:enumerate>
</body>

</html>

109



WDialog Manual WDialog / Reference / The UI language / ui:enumerate

</ui:page>
</ui:dialog>

<ui:template name="print" from-caller="ext">
"$ext"

</ui:template>

In this example, the variableprefcol, a declared enumerator of typecolor is iterated. For all selected colors the template
print is called which puts the external names into double quotes. Furthermore, the separator is a comma followed by a
space character. If no color is selected, the special string "Nothing!" is printed instead.

Assumed that the user has selected red and blue, the output of this example is:

You have selected: "red", "blue"

110



ui:enumeration and ui:enum

Web Path: WDialog / Reference / The UI language / ui:enumeration and ui:enum

42 The elements ui:enumeration and ui:enum

The element ui:enumeration declares a new enumerator type; for an introduction to enumerator types seeData Types(→
27).

Once an enumerator type has been declared, it can be referred to in variable declarations (seeui:variable (→ 170)) by
setting thetype attribute of the variable to the name of the enumerator type. Furthermore, the new type can be used in the
ui:translate(→ 165) element to map internal tokens to external representations in the user interface. Another application
of enumerator types is the possibility to enumerate their values by theui:enumerate(→ 108) element.

The declaration looks like:

<ui:enumeration name="sample_enum">
<ui:enum internal="int1" external="ext1"/>
<ui:enum internal="int2" external="ext2"/>
...

</ui:enumeration>

Theui:enum elements specify the possible values of the enumerator. Every value has an internal and an external repre-
sentation; the internal value is used to identify the value in programs while the external value is taken to display the value
in the user interface. If the external value is missing, it defaults to the same value as the internal value.

Variables of the declared enumerator have set values: The set is a subset of the values specified in the enumerator decla-
ration. For example, the variable

<ui:variable name="sample_var" type="sample_enum"/>

has possible values: {}, {"int1"}, {"int2"}, {"int1","int2"}, and so on.

The order of the ui:enum declarations determines the order of the enumerated values. Especially, this order is used when
enumerators are visualized (for example, byui:select(→ 150) interactors).

42.1 Declaration

Level: Dialog structure

<!ELEMENT ui:enumeration ( ui:enum )*>

<!ATTLIST ui:enumeration
name NMTOKEN #REQUIRED>

111



WDialog Manual WDialog / Reference / The UI language / ui:enumeration and ui:enum

<!ELEMENT ui:enum EMPTY>

<!ATTLIST ui:enum
internal NMTOKEN #REQUIRED
external CDATA #IMPLIED>

42.2 Attributes

Theui:enumeration element has only one attribute:

• name: The name of the enumerator type

Theui:enum element has these attributes:

• internal: Specifies the internal token of an enumerated value

• external: Optionally, this attributes specifies the external representation of an enumerated value. If missing, the
external value defaults to the same string as the internal value.

42.3 Example

<ui:dialog name="print_list" ...>
<ui:enumeration name="list_length_type">

<ui:enum internal="10" external="10 items per page"/>
<ui:enum internal="20" external="20 items per page"/>
<ui:enum internal="50" external="50 items per page"/>
<ui:enum internal="100" external="100 items per page"/>

</ui:enumeration>
...
<ui:variable name="list_length" type="list_length_type">

<!-- The default value of this variable: -->
<ui:enum-value>

<ui:enum-item internal="10"/>
</ui:enum-value>

</ui:variable>
...
<ui:page name="select_list_length">

<html>
<body>

Please select the number of items per page:
<ui:select variable="list_length"/>
...

</body>
</html>

</ui:page>
...

</ui:dialog>

112



ui:false

Web Path: WDialog / Reference / The UI language / ui:false

43 The element ui:false

This element ignores its inner nodes without expanding them. Furthermore, this element sets the condition code tofalse.
The condition code can be evaluated byui:cond(→ 94).

43.1 Declaration

Level: Control structure

<!ELEMENT ui:false ANY>

43.2 Sub elements

All page body elements may occur inui:false.

43.3 Example

<ui:false>
...material to ignore...

</ui:false>

43.4 Hints

Note that template parameters and bracket expressions withinui:false are evaluated. Seeui:cond(→ 94) for a discus-
sion of the consequences of this fact.

113



ui:file

Web Path: WDialog / Reference / The UI language / ui:file

44 The element ui:file

The ui:file element displays a file upload widget. The generated HTML output consists of anINPUT element with
TYPE=FILE whose name attribute is set to a special identifier which is recognized by the system when the form is submit-
ted.

The name of theui:file box is specified by thename attribute. The dialog object provides access methods to find out
whether a file has been uploaded, and if yes, where it is stored. The file is a temporary file being automatically deleted
after thehandle callback method has returned to the caller. It is allowed to move the file away to a different location in
the filesystem. An example:

<ui:dialog name="sample" start-page="sample_page">
<ui:page name="sample_page">

<html>
<body>

<ui:file name="my_upload"/>
<ui:button label="OK" name="ok"/>

</body>
</html>

</ui:page>
</ui:dialog>

The corresponding code of thehandle method - O’Caml:

method handle() =
match self # event with

Button "ok" ->
(* Somebody pressed "OK", so we check if there is an uploaded file: *)
( match self # lookup_uploaded_file "my_upload" with

None ->
(* No file! *)
...

| Some arg ->
(* There is a file encoded as arg : Netcgi_types.cgi_argument.
* See the documentation of the Netcgi_types module contained
* in the netstring/ocamlnet package for details.
*)

( match arg # representation with
‘Memory -> assert false (* Impossible case *)

| ‘File filename ->
(* "filename" is the file where the contents of the uploaded
* file are currently stored. For example:
*)

114



WDialog Manual WDialog / Reference / The UI language / ui:file

Sys.rename filename "/other/location";
)

)
| ... ->

(* Other cases. You need not to check whether there is a temporary
* upload file to delete, as this is done automatically.
*)

Here is the same as Perl code:

sub handle {
my ($self) = @_;
my ($e, $name) = $self->event();
if ($e eq ’BUTTON’ && $name eq ’ok’) {

# Somebody pressed "OK", so we check if there is an uploaded file:
my ($username, $mimetype, $filename) = $self->uploaded_file("my_upload");
if ($filename eq ’’) {

# No file!
...

} else {
# $filename is the file where the contents of the uploaded
# file are currently stored. For example:
rename($filename, "/other/location");

}
} elsif (...) {

# Other cases. You need not to check whether there is a temporary
# upload file to delete, as this is done automatically.
...

}

44.1 Declaration

Level: Generative

<!ELEMENT ui:file EMPTY>
<!ATTLIST ui:file

name NMTOKEN #REQUIRED
cgi (auto|keep) "auto"

>

Additionally, ui:file must only occur insideui:form.

44.2 Attributes

• name: Specifies the name of the file upload widget.

115



WDialog Manual WDialog / Reference / The UI language / ui:file

• cgi: The value "auto" means that the name of the CGI variable associated with the widget is selected automatically.
This works perfectly unless you want to refer to this variable from Javascript or from some other manually written
event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isupload_ concatenated
with the name of the widget. In this case the widget name should only contain alphanumeric characters, because
not all punctuation characters can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedINPUT HTML element. However, there is rarely an
application for this possibility.

44.3 Sub elements

ui:file does not have sub element.

44.4 Generated HTML code

Theui:file element generates HTML code which roughly looks as follows:

<input type="FILE" name="...">

116



ui:form

Web Path: WDialog / Reference / The UI language / ui:form

45 The element ui:form

This element begins a form that may contain form elements like input boxes and buttons. The generated HTML code
consists of a form element and many hidden input fields keeping the current state of the dialog.

In order to include form elements, anui:form element is required, and all form elements must only occur withinui:form.
Furthermore, anui:form is required, too, if the page contains hyperlinks (ui:a (→ 80)). Furthermore, anui:form is
required if the page refers to popup pages.

It is recommended to put theui:form element into a table, because many browsers render the table only once it is
completely loaded. This avoids that the user presses buttons before theui:form element is loaded which causes incorrect
behaviour of the system. However, newer browsers supporting DOM level 2 render tables even if they are incomplete
such that the trick no longer works. (Note that submitting clearly incomplete forms should be considered as a bug of the
browsers.)

45.1 Declaration

Level: Generative element

<!ELEMENT ui:form ANY>

<!ATTLIST ui:form
action-suffix CDATA "">

The children may be any elements that are allowed in page context (seeui:page(→ 135) for an overview); however, it is
not allowed that there is a secondui:form element anywhere in the current page.

45.2 Attributes

• action-suffix: This string is appended to the automatically generated ACTION attribute. The string should
begin with a slash character.

The elementui:form defines almost no attributes; however, if there are attributes these are added to the generated
HTML form element. Especiallyonsubmit and onreset work. Note that the attributesname, action, method,
accept-charset, andenctype are generated and if these occur insideui:form they will be ignored.

45.3 Sub elements

All elements allowed in a page body can occur withinui:form.

117



WDialog Manual WDialog / Reference / The UI language / ui:form

45.4 Generated HTML code

Theui:form element generates HTML code which roughly looks as follows:

<form name="uiform" action="..." method="post" enctype="multipart/form-encoded"
accept-charset="...">

<input type="hidden" ...>
<input type="hidden" ...>
... (Sub elements)
<input type="hidden" ...>
<input type="hidden" ...>

</form>

Note that the generated form element has always the nameuiform such that it is possible to access the element from
Javascript code. - If there are attributes in theui:form element, these are added to the generated form element.

Sometimes,ui:form generates a second form element

<form name="uialtform" ...>
...

</form>

immediately afteruiform.

45.5 Example

A page with a button:

<ui:page name="sample">
<html>

<body>
<ui:form>

<h1>A sample page</h1>
You can press on this
<ui:button name="sample_button" label="Button"/>

</ui:form>
</body>

</html>
</ui:page>

118



ui:if

Web Path: WDialog / Reference / The UI language / ui:if

46 The element ui:if

This element compares two values. If the result is true, the inner nodes are expanded and the condition code is set totrue;
otherwise the inner nodes are ignored, and the conditon code is set tofalse.

46.1 Declaration

Level: Control structure

<!ELEMENT ui:if ANY>

<!ATTLIST ui:if
value1 CDATA #REQUIRED
value2 CDATA #REQUIRED
op CDATA "eq"

>

46.2 Attributes

• value1: The first operand of the comparison

• value2: The second operand of the comparison

• op: The comparison operator

Since WDialog-2.1 it is allowed to pass more than two operands to the comparison function, although there is not any
application for this feature in WDialog itself. User-defined comparison functions may take advantage from this, however.
Additional operands are passed as attributesvalue3, value4 and so on.

46.3 Sub elements

All page body elements may occur as sub elements.

46.4 Operators

The following operators are defined forui:if:

• eq: string equality

• ne: string inequality

119



WDialog Manual WDialog / Reference / The UI language / ui:if

• match: the first operand matches the regular expression denoted by the second operand (see notes on regular
expressions below)

• nomatch: the first operand does not match the regular expression denoted by the second operand (see notes on
regular expressions below)

• int-eq: integer equality

• int-ne: integer inequality

• int-lt: the first operand is less than the second operand

• int-le: the first operand is less or equal than the second operand

• int-gt: the first operand is greater than the second operand

• int-ge: the first operand is greater or equal than the second operand

Since WDialog-2.1, it is possible to call any function defined for bracket expressions. The function is called with two
(or more) strings as arguments, and it is expected that the function returns a number indicating a boolean result: 0 is
considered as the false value, and a non-zero number is considered as the true value. Currently, there aren’t any other
functions that would make sense to be called. The user may, however, define further functions.

46.5 Regular expressions

The engine matching regular expressions is PCRE (Perl-compatible regular expressions), so the Perl syntax is used. The
expressions are not anchored by default, so have to write^ and$$ to force anchoring.̂ matches the beginning of the
string, and$$ matches the end of the string ("single-line expressions"). Note that you have to write double dollars$$
because the dollar character is the escape character for template parameters.

46.6 Hints

Note that template parameters and bracket expressions withinui:if are unconditionally evaluated. Seeui:cond (→ 94)
for a discussion of the consequences of this fact.

46.7 Example

<ui:if value1="$[n]" value2="1" op="int-gt">
The result has more than one solution: ...

</ui:if>

120



ui:ifexpr

Web Path: WDialog / Reference / The UI language / ui:ifexpr

47 The element ui:ifexpr

The element expects in theexpr attribute a number which is interpreted as boolean value. If the number is non-zero, the
inner nodes of the element are expanded and the condition code is set totrue; otherwise the inner nodes are ignored, and
the conditon code is set tofalse.

47.1 Declaration

Level: Control structure

<!ELEMENT ui:ifexpr ANY>

<!ATTLIST ui:ifexpr
expr CDATA #REQUIRED

>

47.2 Attributes

• expr: An integer number. A non-zero value as considered as true boolean value, and the number zero is considered
as false boolean value. The number is usually the result of the evaluation of a bracket expression.

47.3 Sub elements

All page body elements may occur as sub elements.

47.4 Hints

Note that template parameters and bracket expressions withinui:if are unconditionally evaluated. Seeui:cond (→ 94)
for a discussion of the consequences of this fact.

47.5 Example

<ui:ifexpr expr="$[int-gt(n,1)]">
The result has more than one solution: ...

</ui:ifexpr>

121



ui:iflang

Web Path: WDialog / Reference / The UI language / ui:iflang

48 The element ui:iflang

This element checks whether the current language is the language specified byxml:lang. If the result is true, the inner
nodes are expanded and the condition code is set totrue; otherwise the inner nodes are ignored, and the conditon code is
set tofalse.

For an overview about multi-language support, see the chapter aboutInternationalization(→ 67).

48.1 Declaration

Level: Control structure

<!ELEMENT ui:iflang ANY>

<!ATTLIST ui:iflang
xml:lang CDATA #REQUIRED>

48.2 Attributes

• xml:lang: Specifies the language to check for.

48.3 Sub elements

All page body elements may occur as sub elements.

48.4 The l namespace

This element can be abbreviated as follows: Instead of

<ui:iflang xml:lang="TOKEN">TREE</ui:iflang>

one can write

<l:TOKEN>TREE</l:TOKEN>

122



WDialog Manual WDialog / Reference / The UI language / ui:iflang

48.5 Example

<ui:cond>
<l:en>One</l:en>
<l:de>Eins</l:de>
<l:it>Uno</l:it>
<l:es>Uno</l:es>

</ui:cond>

Due to the implementation it is currently not recommended to use the combinationui:cond/ui:iflang as substitute for
message catalogues if the number of languages is bigger than a small number (three or four). (May be improved in the
future, however.)

48.6 Hints

Note that template parameters and bracket expressions withinui:iflang are unconditionally evaluated. Seeui:cond(→
94) for a discussion of the consequences of this fact.

123



ui:ifvar

Web Path: WDialog / Reference / The UI language / ui:ifvar

49 The element ui:ifvar

This element compares a dialog variable with a value. If the result is true, the inner nodes are expanded and the condition
code is set totrue; otherwise the inner nodes are ignored, and the conditon code is set tofalse.

The domain of comparisons that can be performed byui:ifvar overlaps withui:if (→ 119). Especially the comparison
of a non-associative variable with a value can be expressed by both elements. In doubt, use the shorter and more common
ui:if (→ 119).

49.1 Declaration

Level: Control structure

<!ELEMENT ui:ifvar ANY>

<!ATTLIST ui:ifvar
variable NMTOKEN #REQUIRED
index NMTOKEN #IMPLIED
value CDATA #REQUIRED
op CDATA "eq"

>

49.2 Attributes

• variable: The name of the variable that is compared with the value.

• index: If the variable is associative, the index can select the component. However, it is also possible to compare
associative variables as such if one of the list operators is applied.

• value: The second operand of the comparison besides the value of the variable.

• op: Selects the comparison operator

49.3 Sub elements

All page body elements may occur as sub elements.

49.4 Operators

The following operators are defined forui:if (we call the value of the variable the "first operand", and the value denoted
by thevalue attribute the "second operand"):

124



WDialog Manual WDialog / Reference / The UI language / ui:ifvar

• Operators for string variables

– eq: string equality

– ne: string inequality

– match: the first operand matches the regular expression denoted by the second operand (see notes on regular
expressions below)

– nomatch: the first operand does not match the regular expression denoted by the second operand (see notes
on regular expressions below)

– int-eq: integer equality

– int-ne: integer inequality

– int-lt: the first operand is less than the second operand

– int-le: the first operand is less or equal than the second operand

– int-gt: the first operand is greater than the second operand

– int-ge: the first operand is greater or equal than the second operand

• Operators for enumerators (declared or dynamic), and for associative variables

– contains: The first operand contains the second operand as component (key). For enumerators, this means
that the first operand has an internal value equal to the second operand. For associations, this means that the
first operand has a component indexed by the second operand.

– mentions: The first operand contains the second operand as component (value). For dynamic enumerators,
this means that the first operand has an external value equal to the second operand (the operation is not defined
for declared enumerators). For associations, this means that the first operand has a component in whose value
the second operand occurs.

– card-eq, card-ne, card-lt, card-le, card-gt, card-ge: The cardinality of the first operand is compared
with the number in the second operand.

• Operators for variables of typedialog

– dialog-exists: The first operand is of dialog type, and the second operand is eitheryes or no. The com-
parison yields a true result, if the first operand contains a dialog and the second operand isyes, or if the first
operand does not contain a dialog, and the second operand isno.

Since WDialog-2.1, it is possible to call any function defined for bracket expressions. The function is called with two
arguments, and it is expected that the function returns a number indicating a boolean result: 0 is considered as the false
value, and a non-zero number is considered as the true value. Currently, there aren’t any other functions that would make
sense to be called. The user may, however, define further functions.

49.5 Regular expressions

The engine matching regular expressions is PCRE (Perl-compatible regular expressions), so the Perl syntax is used. The
expressions are not anchored by default, so have to write^ and$$ to force anchoring.̂ matches the beginning of the
string, and$$ matches the end of the string ("single-line expressions"). Note that you have to write double dollars$$
because the dollar character is the escape character for template parameters.

125



WDialog Manual WDialog / Reference / The UI language / ui:ifvar

49.6 Example

<ui:dialog start-page="poll">
<ui:enumeration name="fruit">

<ui:enum internal="apple" external="I like apples"/>
<ui:enum internal="orange" external="I like oranges"/>
<ui:enum internal="bananas" external="I like bananas"/>
<ui:enum internal="ananas" external="I like ananas"/>

</ui:enumeration>

<ui:variable name="pref" type="fruit"/>

<ui:page name="poll">
...
Please click at your preferred fruit:
<ui:select variable="pref" multiple="yes"/>
...

</ui:page>

<ui:page name="check">
...
<ui:ifvar variable="pref" value="0" op="card-eq">

You don’t have selected any fruit sort. ...
</ui:ifvar>
...

</ui:page>
</ui:dialog>

49.7 Hints

Note that template parameters and bracket expressions withinui:ifvar are unconditionally evaluated. Seeui:cond (→
94) for a discussion of the consequences of this fact.

126



ui:imagebutton

Web Path: WDialog / Reference / The UI language / ui:imagebutton

50 The element ui:imagebutton

This element displays an imagebutton, i.e. a button rendered as an image. The generated HTML code consists of an
INPUT element withTYPE=IMAGE, whosename attribute is set to a special identifier which is recognized by the system
when the form is submitted.

When the user clicks on the button, anImage_button event is generated (unless theindex attribute is specified; see
below); thehandle callback method of the dialog object can check whether the current event is the event associated with
this button, and the method can execute code depending on the result of this check. For a description of possible events
seeEvents(→ 41). The following example illustrates image button events:

<ui:dialog name="sample" start-page="p1">
<ui:page name="p1">

<html>
<body>

<h1>Button test</h1>
This is a <ui:imagebutton name="b" src="button.gif"/>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the image button event has the name "b". In order to check whether this event occured in thehandle method, the
following piece of code is recommended. O’Caml:

method handle =
match self # event with

Image_button("b",x,y) ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {
my ($self) = @_;
my ($e, $name, $x, $y) = $self->event;
if ($e eq ’IMAGE_BUTTON’ && $name eq ’b’) {

... # Do whatever you want to do
} elsif ... # other cases
;

127



WDialog Manual WDialog / Reference / The UI language / ui:imagebutton

return undef;
}

In both cases, the variables x and y contain the position of the click relative to the origin of the button.

If the ui:imagebutton element sets theindex attribute, the button is identified by the pair(name,index). When the
user clicks on such an indexed imagebutton, anIndexed_image_button event is generated. The index value can be used
to distinguish between several instances of buttons of the same type. For instance, a book store may offer the customer
several books:

<ui:dialog name="sample" start-page="view_records">
<ui:page name="view_records">

<html>
<body>

<h1>View books</h1>
<table>
<tr>

<th>Author</th>
<th>Title</th>
<th>Action</th>

</tr>
<tr>

<td>Damon Runryon</td>
<td>Guys and Dolls</td>
<td><ui:imagebutton name="view" src="view.gif" index="4523"/></td>

</tr>
<tr>

<td>William S. Burroughs</td>
<td>Naked Lunch</td>
<td><ui:imagebutton name="view" src="view.gif" index="8612"/></td>

</tr>
</table>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the index value is the database ID of the record. The typical code to check for such a button in thehandle callback
is - O’Caml:

method handle =
match self # event with

Indexed_image_button("view", index, x, y) ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {

128



WDialog Manual WDialog / Reference / The UI language / ui:imagebutton

my ($self) = @_;
my ($e, $name, $index, $x, $y) = $self->event;
if ($e eq ’INDEXED_IMAGE_BUTTON’ && $name eq ’view’) {

... # Do whatever you want to do
} elsif ... # other cases
;
return undef;

}

Note that the transport mechanism for the strings specified for name and/or index is 8 bit clean (at least ifcgi="auto").
This means that the name and index strings may be composed of all characters of the character set.

50.1 Declaration

Level: Generative

<!ELEMENT ui:imagebutton EMPTY>
<!ATTLIST ui:imagebutton

name NMTOKEN #REQUIRED
index CDATA #IMPLIED
src CDATA #REQUIRED
align CDATA #IMPLIED
goto NMTOKEN #IMPLIED
cgi (auto|keep) "auto"

>

Additionally, ui:imagebutton must only occur insideui:form.

50.2 Attributes

The following attributes have a special meaning:

• name: Specifies the name of the button.

• index: Specifies the index value of the button. If this attribute is present, the button becomes an indexed button;
otherwise the button is a plain button.

• src: Specifies the image file containing the image bitmap.

• align: Specifies thealign attribute of the generated HTML element. Defaults toBOTTOM according to HTML
standards.

• goto: Specifies which page is the next page if the button is pressed. The variable containing the next page is
initialized with the name specified here before thehandle method is invoked. This means that the action of the
button is to go to this page, unless the action is overridden in thehandle method.

• cgi: The value "auto" means that the name of the CGI variable associated with the button is selected automatically.
This works perfectly unless you want to refer to this variable from Javascript or from some other manually written
event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isimagebutton_

129



WDialog Manual WDialog / Reference / The UI language / ui:imagebutton

concatenated with the name of the button. However, it is not allowed to specify "keep" if there is also an index
value. Furthermore, the button name should only contain alphanumeric characters, because not all punctuation
characters can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedINPUT HTML element. This means that especially the
onclick attribute may be specified.

50.3 Sub elements

ui:imagebutton elements do not have sub elements.

50.4 Generated HTML code

Theui:imagebutton element generates HTML code which roughly looks as follows:

<input type="IMAGE" name="..." src="..." align="...">

130



ui:iter-*

Web Path: WDialog / Reference / The UI language / ui:iter-*

51 The elements ui:iter-empty, ui:iter-head, ui:iter-foot, and ui:iter-separator

These elements must be used insideui:iterate (→ 132), orui:enumerate(→ 108), and are explained there.

51.1 Declaration

Level: Control structure

<!ELEMENT ui:iter-empty ANY>
<!ELEMENT ui:iter-head ANY>
<!ELEMENT ui:iter-foot ANY>
<!ELEMENT ui:iter-separator ANY>

51.2 Sub elements

All page body elements may occur inside theui:iter particles.

131



ui:iterate

Web Path: WDialog / Reference / The UI language / ui:iterate

52 The element ui:iterate

This elements instantiates a template several times. For every component of a compound variable the template is expanded,
and the resulting texts are concatenated. The following types of variables can be iterated:

• Dynamic enumerators:The members of the set are iterated in turn

• Associations:The elements of the associative variable are iterated in turn

• Strings:Even strings can be iterated. The string is regarded as a list of words; the words must be separated by white
space.

For an overview over templates, see the chapterTemplates(→ 49).

See also the similar elementui:enumerate(→ 108) that works for declared enumerators.

52.1 $int and $ext

The element iterates over the components of the given variable. For every component, the named template is called, and
the lexical parameters$int and$ext identify the components. These parameters are always passed to the template (and
additionally, the parameters given byui:param, and the current context parameters are passed, too).

If the variable is a dynamic enumerator,$int will be set to the internal values of the components, and$ext will be set to
the external values of the components.

If the variable is associative,$int will be set to the keys of the components, and$ext will be set to the associated values
of the components, if possible. The latter is only defined for associative string variables. For other types of associations,
the parameter$ext is simply empty.

If the variable is a string (list of words),$int will be set to the index number of the words (0 for the first word, 1 for the
second word, etc.). The parameter$ext will be set to the words themselves.

52.2 Declaration

Level: Control structure

<!ELEMENT ui:iterate ( ( ui:param )*,
( ui:iter-empty )?,
( ui:iter-head )?,
( ui:iter-foot )?,
( ui:iter-separator )?

)
>

132



WDialog Manual WDialog / Reference / The UI language / ui:iterate

<!ATTLIST ui:iterate
template NMTOKEN #REQUIRED
variable NMTOKEN #REQUIRED
index CDATA #IMPLIED

>

52.3 Attributes

• template: Names the template to instantiate. Note that the current language of the dialog may also influence which
template is selected (see below).

• variable: Selects the variable containing the iterated values. This variable must be either a dynamic enumerator,
or an association, or a string.

• index: If the variable is an associative list over dynamic enumerators or strings, this attribute selects the component
to use.

52.4 Sub elements

• ui:param(→ 140): Passes additional lexical parameters to the called template.

• ui:iter-empty (→ 131): If existing, and if the iterated variable is empty, the nodes belowui:iter-empty are
expanded instead of the template.

• ui:iter-head (→ 131): If existing, and the iterated variable is non-empty, the nodes belowui:iter-head are
prepended to the concatenated template instances.

• ui:iter-foot (→ 131): If existing, and the iterated variable is non-empty, the nodes belowui:iter-foot are ap-
pended to the concatenated template instances.

• ui:iter-separator(→ 131): If existing, and the iterated variable contains more than one component, the nodes below
ui:iter-separator are placed between the template instances.

52.5 Internationalization

If a certain language is selected for the dialog, this also affects the template system. In particular, it is first checked if the
used template is defined for this language, and if so, this version of the template will be used. Otherwise, it is checked
whether there is a template withoutxml:lang attribute, and if it can be found, this version will be used.

For more information, see the chapter aboutInternationalization(→ 67).

52.6 Example

<ui:dialog name="sample" start-page="show">
<ui:variable name="fruit_index">

<ui:string-value>0 3</ui:string-value>
</ui:variable>

<ui:variable name="fruit" type="dynamic-enumerator">
<ui:dyn-enum-value>

<ui:dyn-enum-item internal="0" external="apple"/>

133



WDialog Manual WDialog / Reference / The UI language / ui:iterate

<ui:dyn-enum-item internal="1" external="ananas"/>
<ui:dyn-enum-item internal="2" external="pineapple"/>
<ui:dyn-enum-item internal="3" external="banana"/>

</ui:dyn-enum-value>
</ui:variable>

<ui:page name="show">
<html>

<body>
<p>Available fruit:

<ui:iterate variable="fruit" template="display-fruit"/>
</p>

<p>Selected fruit according to index:
<ui:iterate variable="fruit_index" template="display-fruit-idx"/>

</p>
</body>

</html>
</ui:page>

</ui:dialog>

<ui:template name="display-fruit" from-caller="ext">
<tt>$ext</tt>

</ui:template>

<ui:template name="display-fruit-idx" from-caller="int">
<tt>$[translate(fruit,$int)]</tt>

</ui:template>

134



ui:page

Web Path: WDialog / Reference / The UI language / ui:page

53 The element ui:page

Every dialog object consists of one or several pages, which are the HTML documents visualizing the state of the object.
When the web browser sends a request to the WDialog system, the reply is one of the pages of the current dialog object.
Because of this, pages are the units of communications to the browser.

For example, the following page defines a minimal HTML document:

<ui:page name="sample">
<html>

<head>
<title>This is a sample page</title>

</head>
<body>

This is the body of the sample page.
</body>

</html>
</ui:page>

The dialog object stores the name of the current page, and this name is used to select the page replied to the browser. In
detail, the dialog object distinguishes between thecurrent pageand thenext page. This can be explained by illustrating
the actions taken by the WDialog system to display the next page:

• When the user clicks on a button or a hyperlink, this event causes that thehandle callback of the dialog object is
invoked. At this time, the current page is still the old page, and the next page is the designated new page (either
the again the old page, or the page specified by thegoto attribute of the button or hyperlink element). The callback
method can now change the name of the next page.

• Now the page change occurs: The name of the next page is stored in the variable containing the name of the current
page.

• Theprepare_page callback is invoked, and at this moment, the current page is the new page. (You can still ask the
dialog object for the "next page"; however it will simply return the current page as there is currently no next page.)

• The final HTML document is created by expanding the current page until all templates are instantiated. This
document is sent back to the browser.

For instance, there is a possible page change from sample1 to sample2 in the following example:

<ui:page name="sample1">
<html>

<head>
<title>This is sample page 1</title>

135



WDialog Manual WDialog / Reference / The UI language / ui:page

</head>
<body>

<ui:a name="mylink" goto="sample2">Click here to go to page 2</ui:a>
</body>

</html>
</ui:page>

<ui:page name="sample2">
<html>

<head>
<title>This is sample page 2</title>

</head>
<body>

This is the body of the sample page 2.
</body>

</html>
</ui:page>

It is assumed that the dialog object starts with sample1. This page contains a hyperlink (ui:a (→ 80)) with agoto attribute
pointing to sample2. When the user clicks on this hyperlink, the current page is sample1, and the designated next page is
sample2. Thehandle callback of the dialog object can now change the name of the next page if this is required for some
reason. Unless this actually happens, the next page remains to be sample2, and the current page changes to sample2. The
prepare_page callback will already find that sample2 is the current page. Finally, sample2 is displayed as the next page
on the browser window.

The first page of a dialog object can be specified in thestart-page attribute of theui:dialog (→ 98) element. Example:

<ui:dialog name="sampleobject" start-page="sample1">
<!-- Now ui:pages sample1 and sample2 -->
...

</ui:dialog>

A page is a template that is called by WDialog. It may contain template parameters, and it can declare parameters using
from-caller andfrom-context. For example, the following page displays the sentence specified in the parameters
five times:

<ui:page name="repeater" from-caller="s">
<ui:default name="s">

I have to write this sentence five times.
</ui:default>
<html>

<body>
$s $s $s $s $s

</body>
</html>

</ui:page>

Note that the usual rules for template parameters apply: Theui:default element defines the default value of the param-
eter which is used if there is no directly passed parameter value. As pages are automatically called, it is not possible to

136



WDialog Manual WDialog / Reference / The UI language / ui:page

pass parameters directly to pages. Because of this, the default value is always taken by the system.

This simply means: In the context of pages, it is possible to bind a parameterp locally to a valuev by including the
statement

<ui:default name="p">v</ui:default>

at the beginning of the ui:page element, and by declaringp usingfrom-caller="p".

It is also possible that several pages share parameters. The shared parameters must be defined in theui:context(→ 96)
section of the dialog object, and the parameters must be imported byfrom-context. Example:

<ui:dialog name="sample" start-page="sample1">
<ui:context>

<ui:param name="bgcolor">#342312</ui:param>
</ui:context>

<ui:page name="sample1" from-context="bgcolor">
<html>

<body bgcolor="$bgcolor">
...

</body>
</html>

</ui:page>

<ui:page name="sample2" from-context="bgcolor">
<html>

<body bgcolor="$bgcolor">
...

</body>
</html>

</ui:page>
</ui:dialog>

In general, theui:context section specifies the parameter context valid for the whole dialog; i.e. when the instantiation
procedure begins, the current context for this procedure is initialized with the parameter values defined inui:context.
Because of this early binding rule, the parameters can also be imported into pages. - Note that theui:context section
affects all template instantiations within pages, too; i.e. context parameters can be imported by any template invoked
directly or indirectly from the page.

For general information about templates and the instantiation mechanism, see theTemplates(→ 49) section.

53.1 Declaration

Level: Both dialog structure and control structure

<!ELEMENT ui:page ANY>
<!ATTLIST ui:page

137



WDialog Manual WDialog / Reference / The UI language / ui:page

name NMTOKEN #REQUIRED
from-caller NMTOKENS #IMPLIED
from-context NMTOKENS #IMPLIES
popup (yes|no) "no"

>

The subelements ofui:page must match the informal rule( ui:default*, %page-body;* ) where%page-body;
stands symbolically for all allowed sub elements. Note that whitespace between the%page-body; elements counts, but
at the other places it does not count.

53.2 Attributes

• name: Specifies the name of the page. The name must be unique among all page of the current dialog.

• from-caller: Lists the parameters with lexical scope that occur inside the page body.

• from-context: Lists the parameters with dynamic scope that occur inside the page body.

• popup: If "yes", it is allowed that this page is the target of aui:popup(→ 141) orui:server-popup(→ 154).

53.3 Sub elements

The sub elements%page-body; of ui:page are either HTML elements, or the following ui elements that generate HTML
elements.

• ui:a (→ 80)

• ui:button(→ 87)

• ui:checkbox(→ 91)

• ui:cond(→ 94)

• ui:context(→ 96)

• ui:dynamic(→ 102)

• ui:encode(→ 106)

• ui:enumerate(→ 108)

• ui:false(→ 113)

• ui:file (→ 114)

• ui:form (→ 117)

• ui:if (→ 119)

• ui:ifexpr (→ 121)

• ui:iflang (→ 122)

• ui:ifvar (→ 124)

• ui:imagebutton(→ 127)

138



WDialog Manual WDialog / Reference / The UI language / ui:page

• ui:iterate (→ 132)

• ui:popup(→ 141)

• ui:radio (→ 144)

• ui:richbutton(→ 147)

• ui:select(→ 150)

• ui:server-popup(→ 154)

• ui:special(→ 156)

• ui:text and ui:password(→ 160)

• ui:textarea(→ 163)

• ui:translate(→ 165)

• ui:true (→ 167)

• ui:use(→ 168)

139



ui:param

Web Path: WDialog / Reference / The UI language / ui:param

54 The element ui:param

This element defines a parameter to be passed to a template. The element can be used insideui:use(→ 168),ui:context
(→ 96),ui:iterate (→ 132), andui:enumerate(→ 108).

54.1 Declaration

Level: Control structure

<!ELEMENT ui:param ANY>

<!ATTLIST ui:param
name NMTOKEN #REQUIRED

>

54.2 Attributes

• name: The name of the parameter

54.3 Sub elements

The sub elements are the value of the parameter. All page body elements can occur.

140



ui:popup

Web Path: WDialog / Reference / The UI language / ui:popup

55 The element ui:popup

This element generates a Javascript function that opens another page as popup window. The contents of this page are
generated at the time theui:popup element is expanded, which means that the popop window can only contain simple
dialogs that are constant from the perspective of the main window. The elementui:server-popup(→ 154) is able to create
fully dynamic popup windows, however.

The generated Javascript function has the namepopup_<page> where<page> is the identifier found in thepage attribute
(see declaration below). The function takes a string argument which is the window option list known from the Javascript
window.open function; it specifies the visual properties of the new window. By calling the generated function, the window
pops up and displays the constant material found in the referenced page. For example, the following button shows the
pagesample in a new popup window with the specified width and height:

<ui:popup page="sample"/>
<input type="button" onclick="open_sample(’width=100,height=100’)"/>

The page, heresample, must set the attributepopup to yes:

<ui:page name="sample" popup="yes">
...

</ui:page>

This is necessary because the generated HTML code is slightly different from that of normal pages.

The popup window can include interactors like text boxes, selection lists, etc., as well as buttons and hyperlinks. The
interactors are handled as if they occured on the main window. When pressed, the buttons and hyperlinks close the popup
window, and submit the main window. This is very important: Popup windows are not independent of the main window,
but they are rather an extension of the main window that is first hidden, and only exhibited on request of the user. Both
windows form a unit, and can only be processed as a whole by the WDialog toolkit.

It is only possible to have one open popup window at the same time. Trials to open more than one popup window are
silently ignored.

The popup window is automatically closed when any submit button or hyperlink of the main window is pressed, or when
the page currently displayed in the main window is left by other means. In these cases, the user interactions in the popup
window are ignored.

It is possible to change this behavior by additional Javascript statements:

• You can close the popup window by callingwindow.close() from the popup window, or by calling
close_popup() from the main window. The user interactions in the popup window will be ignored.

• You can force submission of the popup window by callinguiform_submit() from the popup window.

141



WDialog Manual WDialog / Reference / The UI language / ui:popup

• You can lock the submission of the main window while a popup window is open by setting theONSUBMIT handler
of theui:form element of the main window toreturn lock_popup()

Note that WDialog generates anONUNLOAD handler for the main window and aONSUBMIT handler for the popup window.

55.1 Declaration

Level: Generative element

<!ELEMENT ui:popup EMPTY>

<!ATTLIST ui:popup
page NMTOKEN #REQUIRED>

It is required that there is aui:form in the current page; however, theui:popup element can occur outside theui:form
element.

55.2 Attributes

• page: The name of the page to display in the popup window. It is required that thepopup attribute of this page is
set to "yes". The Javascript function gets the nameopen_ plus the name of the opened page, e.g.open_menu if the
page is calledmenu.

55.3 Example

<ui:dialog name="enter-your-name" start-page="main">
<ui:variable name="your-name"/>

<ui:page name="main">
<html>

<ui:popup page="popup"/>
<body>

<ui:form onsubmit="return lock_popup()">
Your name is: $[your-name]
<input type="button" value="Change"

onclick="open_popup(’width=200,height=200’)"/>
<br/>
<ui:button name="main_ok" label="OK"/>

</ui:form>
</body>

</html>
</ui:page>

<ui:page name="popup" popup="yes">
<html>

<body>
<ui:form>

142



WDialog Manual WDialog / Reference / The UI language / ui:popup

Enter your name:
<ui:text variable="your-name"/><br/>
<ui:button name="popup_ok" label="OK"/>
<input type="button" value="Cancel" onclick="window.close()"/>

</ui:form>
</body>

</html>
</ui:page>

</ui:dialog>

In this example, the main page shows the current name of the user only as string constant. In order to change it, the user
must press the "Change" button, which opens the popup window containing the text box. When the user presses "OK"
in the popup window, the new user name is put into the variable, the popup window is closed, and the main window is
redisplayed (because of form submission). When the user presses "Cancel" in the popup window, the popup window is
closed, and the new name is ignored.

When the popup window is open, the "OK" button of the main window is locked because of theONSUBMIT handler.

55.4 Further Questions

I want that the popup window behaves differently depending on user interactions in the main window. How do I do this?
Either you can program the special behavior fully in Javascript, or you useui:server-popup(→ 154) instead. The latter
element causes that the popup window is generated after theopen_popup function is called, and goes back to the server
for this.

Can I define my ownONSUBMIT handler for the popup window?It is not allowed to set theONSUBMIT attribute of the
ui:form element in popup windows. This attribute is reserved for WDialog. However, you can modify the handler after
WDialog has set its own handler. Execute after the wholeui:form element these Javascript statements:

var wd_onsubmit = document.uiform.onsubmit;
document.uiform.onsubmit = my_handler;

Furthermore, program your own handlermy_handler:

function my_handler () {
...
// If you do not want form submission:
return false;
...
// If you do want form submission:
return wd_onsubmit();

}

143



ui:radio

Web Path: WDialog / Reference / The UI language / ui:radio

56 The element ui:radio

This element displays a radiobox. The generated HTML code consists of anINPUT element withTYPE=RADIO, whose
name attribute is set to a special identifier which is recognized by the system when the form is submitted.

The radiobox must be tied to an enumerator variable (either a declared one, or a dynamic enumerator), or a string variable.
The name of the variable must be specified in thevariable attribute. Furthermore, there must be avalue attribute
determining which value is visualized by the radiobox. The rule is as follows: The radiobox is in the state "checked" iff
the specified value occurs in the set of values currently stored in the specified variable. A string variable is considered as
a one-element set for this purpose.

The radiobox widget will be initialized to the state given by this rule when the current page is displayed. All radioboxes
referring to the same variable form a group of boxes, and only one of the boxes can be checked at the same time. If the
contents of the variable would cause that more than one box is checked, the browser enforces that only one box remains
checked (but it is unspecified which box is selected).

Any state change of the widget caused by user interaction will be propagated back to the enumerator variable when the
current page is submitted. This means that if the user checks the box the specified value will be added to the specified
enumerator, and that conversely if the user releases the box the specified value will be deleted from the specified enumer-
ator variable. In principle, other values contained in the enumerator variable than the specified one remain unchanged;
however, the browser will automatically deselect all other radioboxes of the same group if one radiobox is checked, such
that normally the other values of the enumerator are deleted.

Of course, the specified value is an internal value with respect to the difference between internal and external values.

In the following example, the user can answer a yes/no question. The variableuser_answer is initialized with the set
{"yes"}, and because of this, the page appears initially with a checked "Yes" box and an unchecked "No" box. The
radioboxes simply visualize the current state of the variable. When the customer has given the answer and presses the
"OK" button, the variableuser_answer is automatically updated, and reflects again the current state of the boxes. From
thehandle callback method, one can read the variableuser_answer and interpret the contents.

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="yesno">

<ui:enum internal="yes" external="Yes"/>
<ui:enum internal="no" external="No"/>

</ui:enumeration>

<ui:variable name="user_answer" type="yesno">
<ui:enum-value>

<ui:enum-item internal="yes"/>
</ui:enum-value>

</ui:variable>

<ui:page name="sample_page">
<html>

<body>
What is your answer?

144



WDialog Manual WDialog / Reference / The UI language / ui:radio

<ul>
<li><ui:radio variable="user_answer" value="yes"/>

Yes</li>
<li><ui:radio variable="user_answer" value="no"/>

No</li>
</ul>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

Note that only the empty set and single-valued sets are reasonable values for theuser_answer variable. Even if we
initialize the variable with multi-valued sets (such as {"yes","no"}), the browser will enforce that only one of the boxes is
checked; however, it is unspecified which box remains checked.

56.1 Declaration

Level: Generative

<!ELEMENT ui:radio EMPTY>
<!ATTLIST ui:radio

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
value NMTOKEN #REQUIRED
cgi (auto|keep) "auto"

>

Additionally, ui:radio must only occur insideui:form.

56.2 Attributes

The following attributes have a special meaning:

• variable: Specifies the variable of the current dialog object to which the radiobox is tied. Unless theindex
attribute is present, the variable must be a declared enumerator, a dynamic denumerator, or a string. If there is an
index attribute, the variable must be an associative list of one of the mentioned types.

• index: Specifies the index value of the element of the associative variable to which the radiobox is tied.

• value: Specifies the internal value whose presence in the enumerator is represented by the radiobox.

• cgi: The value "auto" means that the name of the CGI variable associated with the radiobox is selected automat-
ically. This works perfectly unless you want to refer to this variable from Javascript or from some other manually
written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isvar_ con-
catenated with the name of the variable. However, it is not allowed to specify "keep" if there is also an index value.
Furthermore, the variable name should only contain alphanumeric characters, because not all punctuation characters
can be safely transported over the CGI protocol.

145



WDialog Manual WDialog / Reference / The UI language / ui:radio

If there are any other attributes, these are added to the generatedINPUT HTML element. This means that especially the
onclick attribute may be specified.

56.3 Sub elements

ui:radio does not have sub elements.

56.4 Tips

Often, it is desired to iterate over all defined values of an enumerator, and to output a radiobox for every item. The
following code demonstrates howui:radio works in conjunction withui:enumerate(→ 108); it is a another version of
the yes/no example:

<ui:template name="list_item" from-caller="int ext">
<li>

<ui:radio variable="user_answer" value="$int"/> $ext
</li>

</ui:template>

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="yesno">

<ui:enum internal="yes" external="Yes"/>
<ui:enum internal="no" external="No"/>

</ui:enumeration>

<ui:variable name="user_answer" type="yesno">
<ui:enum-value>

<ui:enum-item internal="yes"/>
</ui:enum-value>

</ui:variable>

<ui:page name="sample_page">
<html>

<body>
What is your answer?
<ul>
<ui:enumerate template="list_item"

type="yesno"/>
</ul>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

146



ui:richbutton

Web Path: WDialog / Reference / The UI language / ui:richbutton

57 The element ui:richbutton

This element displays an HTML4-style richly rendered button. The generated HTML code consists of anBUTTON element
with TYPE=SUBMIT, whosename attribute is set to a special identifier which is recognized by the system when the form is
submitted.

When the user clicks on the button, aButton event is generated (unless theindex attribute is specified; see below); the
handle callback method of the dialog object can check whether the current event is the event associated with this button,
and the method can execute code depending on the result of this check. For a description of possible events seeEvents
(→ 41). The way events are generated is very similar to theui:button(→ 87) element. Nevertheless, here is an example:

<ui:dialog name="sample" start-page="p1">
<ui:page name="p1">

<html>
<body>

<h1>Button test</h1>
This is a <ui:richbutton name="b"><i>Button</i></ui:richbutton>

</body>
</html>

</ui:page>
</ui:dialog>

Here, the button event has the name "b". In order to check whether this event occured in thehandle method, the following
piece of code is recommended. O’Caml:

method handle =
match self # event with

Button "b" ->
... (* Do whatever you want to do *)

| ... (* other cases *)

- Perl:

sub handle {
my ($self) = @_;
my ($e, $name) = $self->event;
if ($e eq ’BUTTON’ && $name eq ’b’) {

... # Do whatever you want to do
} elsif ... # other cases
;

147



WDialog Manual WDialog / Reference / The UI language / ui:richbutton

return undef;
}

If the ui:richbutton element has theindex attribute, the button is identified by the pair(name,index). When the user
clicks on such an indexed button, anIndexed_button event is generated. The index value can be used to distinguish
between several instances of buttons of the same type.

57.1 Declaration

Level: Generative element

<!ELEMENT ui:richbutton ANY>
<!ATTLIST ui:richbutton

name NMTOKEN #REQUIRED
index CDATA #IMPLIED
goto NMTOKEN #IMPLIED
cgi (auto|keep) "auto"

>

Additionally, ui:richbutton must only occur insideui:form.

57.2 Attributes

The following attributes have a special meaning:

• name: Specifies the name of the button.

• index: Specifies the index value of the button. If this attribute is present, the button becomes an indexed button;
otherwise the button is a plain button.

• goto: Specifies which page is the next page if the button is pressed. The variable containing the next page is
initialized with the name specified here before thehandle method is invoked. This means that the action of the
button is to go to this page, unless the action is overridden in thehandle method.

• cgi: The value "auto" means that the name of the CGI variable associated with the button is selected automatically.
This works perfectly unless you want to refer to this variable from Javascript or from some other manually written
event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isbutton_ concatenated
with the name of the button. However, it is not allowed to specify "keep" if there is also an index value. Furthermore,
the button name should only contain alphanumeric characters, because not all punctuation characters can be safely
transported over the CGI protocol.

If there are any other attributes, these are added to the generatedBUTTON HTML element. This means that especially the
onclick attribute may be specified.

57.3 Sub elements

Theui:richbutton elements may contain any HTML code, or any UI language code that expands to HTML code. The
inner elements are rendered as the surface of the button.

148



WDialog Manual WDialog / Reference / The UI language / ui:richbutton

57.4 Generated HTML code

Theui:richbutton element generates HTML code which roughly looks as follows:

<button type="SUBMIT" name="..." value="...">
inner elements

</button>

57.5 Known Problems

As the underlyingBUTTON element is a recent addition to HTML, not every browser supports it (well). Problems include:

• TheBUTTON element is not recognized at all (example: Netscape 4 browsers)

• TheBUTTON element is rendered but the wrong events are generated (example: all Internet Explorers)

Nevertheless, many browsers support this element very well (e.g. Mozilla, Opera, Lynx), and it is only a matter of time
until this element can be recommended for web sites. Until then, I would not use it unless there is some strategy how to
avoid the problems. For example, server-side browser sniffing can be used to detect whether the element is supported, and
if so, a better-looking HTML page is generated by usingui:richbutton instead ofui:button.

149



ui:select

Web Path: WDialog / Reference / The UI language / ui:select

58 The element ui:select

This element displays a selection box offering the user a number of choices, and the user can select one or multiple items
of the list. The generated HTML code consists of aSELECT element, whose name attribute is set to a special identifier
which is recognized by the system when the form is submitted.

It is important to distinguish between two sets of values: Thebase setcontains all items of the list, whereas theactive set
is the smaller set enumerating only the selected items of the list.

There are three ways to specify these sets:

• One can bind the selection list to a declared enumerator variable. In this case, the base set are all values declared in
theui:enumeration(→ 111), and the active set are the current contents of the variable.

• One can explicitly specify an enumerator variable in thebase attribute; the current contents of this variable will
be taken as base set. In this case, it is possible to bind the selection list to a dynamic enumerator (for which no
declaration exists that could set the base set implicitly). The active set are the current contents of this variable.

• Alternatively, the selection list can also be bound to a string variable whenbase is an enumerator. This is very
useful for selections of the type 1 of N. The string variable contains the currently selected item of the base set, i.e.
the active set has exactly one element.

As all input elements, the selection list must be bound to a variable (specified by thevariable attribute). When the page
is displayed, the base set determines the items of the selection list, and the current contents of the variable = the active
set determines which of the items are selected. When the page is submitted, the active set is written back to the variable.
Note that it is not possible to modify the base set by user interactions, and so there is no mechanism that writes such
modifications back to a base set variable (if there is any). This means that (currently7) only the active set of the selection
list is tied to a variable.

58.1 Declaration

Level: Generative

<!ELEMENT ui:select EMPTY>
<!ATTLIST ui:select

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
base NMTOKEN #IMPLIED
baseindex CDATA #IMPLIED
multiple (yes|no) "no"
size CDATA #IMPLIED
cgi (auto|keep) "auto"

7This is a restriction of HTML. I can imagine a selection list to which the user can add missing items, and I think such an extension would be
practical in many situations. Perhaps the WWW Consortium adds this feature some day.

150



WDialog Manual WDialog / Reference / The UI language / ui:select

>

Additionally, ui:select must only occur insideui:form.

58.2 Attributes

The following attributes have a special meaning:

• variable:Specifies the variable to which the active set of the selection list is tied. This must be a declared or
dynamic enumerator variable, or a string variable. If theindex attribute is also specified, this variable must be an
associative enumerator, or an associative string.

• index: Specifies the index value of the element of the associative variable to which the active set is tied.

• base: Specifies the variable determining the base set of the selection list. This must be a declared or dynamic
enumerator variable. If thebaseindex attribute is also specified, this variable must be an associative enumerator. If
thebase attribute is omitted, and the variable specified byvariable is a declared enumerator, the set of all declared
values of this enumerator will be used as base set. It is an error to omit this attribute if the variable specified by
variable is not a declared enumerator.

• baseindex: Specifies the index value of the element of the associative variable specified by thebase attribute.

• multiple: Specifies whether the selection list allows multiple selections ("yes") or not ("no").

• size: Specifies the size of the visual layout of the selection list, i.e. the number of items that can be manipulated
without scrolling. If omitted, and if multiple="no", the selection list will be usually rendered as drop-down menu.

• cgi: The value "auto" means that the name of the CGI variable associated with the selection list is determined
automatically. This works perfectly unless you want to refer to this variable from Javascript or from some other
manually written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isvar_
concatenated with the name of the variable (of the active set). However, it is not allowed to specify "keep" if there
is also an index value. Furthermore, the variable name should only contain alphanumeric characters, because not
all punctuation characters can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedSELECT HTML element. This means that especially
onblur, onchange, onfocus, andonselect may be specified.

58.3 Sub elements

Theui:select element does not have sub elements.

58.4 Generated HTML code

Theui:select element generates HTML code which roughly looks as follows:

<select name="..." ...>
<option value="..." [selected]>...
...

</select>

151



WDialog Manual WDialog / Reference / The UI language / ui:select

58.5 Example 1: Usage with a declared enumerator

Here, the base set is { "0", "1" }, i.e. simply the values declared for the enumerationbool. This means that the selection
list will offer the values "0" and "1" (but the user will see "false" and "true" because the external values are the visible
ones). The active set is tied to the variableb, andb is initialized with { "0" }. When the page is first displayed, the
selection list will show "false". Any changes resulting from user interaction will be written back tob; i.e. if the user
selects "true", the active set becomes { "1" }, and if he goes back to "false", the active set will again be { "0" }.

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="bool">

<ui:enum internal="0" external="false"/>
<ui:enum internal="1" external="true"/>

</ui:enumeration>

<ui:variable name="b" type="bool">
<ui:enum-value>

<ui:enum-item internal="0">
</ui:variable>

<ui:page name="sample_page">
<html>

<body>
Please select your boolean value:
<ui:select variable="b"/>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

58.6 Example 2: Usage with a dynamic enumerator

In this example, the base set is considered dynamic, for example it might be initialized from a database. However, the
following fragment simply sets the base setcandidates to a fixed list of candidates; I hope you can imagine that this
could also be done by additional code in a really dynamic way. Consequently, the active set must be considered as
dynamic, too, because the active set is always a subset of the base set. The active setvote is empty at the beginning, and
the selection list will show only unselected items. After the user has clicked "OK", the selection will be written back to
vote, which will be either empty or contain one candidate name.

<ui:dialog name="sample" start-page="sample_page">
<ui:variable name="candidates" type="dynamic-enumerator">

<ui:dyn-enum-value>
<ui:dyn-enum-item internal="1234" external="Smith, Joe"/>
<ui:dyn-enum-item internal="763" external="Jackson, Dave"/>
<ui:dyn-enum-item internal="128" external="Miller, Jack"/>

</ui:dyn-enum-value>
</ui:variable>

<ui:variable name="vote" type="dynamic-enumerator"/>

152



WDialog Manual WDialog / Reference / The UI language / ui:select

<ui:page name="sample_page">
<html>

<body>
Please vote for your favourite candidate:
<ui:select variable="vote" base="candidates" size="3"/>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

58.7 Example 3: Usage with a string

The task is the same as in example 2. As you can only select one of the candidates, it is also possible to declarevote as
string. This string should be initialized to one of the possible values, otherwise it is left to the browser (and unspecified)
to initialize the dropdown list.

<ui:dialog name="sample" start-page="sample_page">
<ui:variable name="candidates" type="dynamic-enumerator">

<ui:dyn-enum-value>
<ui:dyn-enum-item internal="1234" external="Smith, Joe"/>
<ui:dyn-enum-item internal="763" external="Jackson, Dave"/>
<ui:dyn-enum-item internal="128" external="Miller, Jack"/>

</ui:dyn-enum-value>
</ui:variable>

<ui:variable name="vote" type="string">
<ui:string-value>763</ui:string-value>

</ui:variable>

<ui:page name="sample_page">
<html>

<body>
Please vote for your favourite candidate:
<ui:select variable="vote" base="candidates" size="3"/>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

153



ui:server-popup

Web Path: WDialog / Reference / The UI language / ui:server-popup

59 The element ui:server-popup

This element generates a Javascript function that opens another page as popup window. The contents of this page are
generated after the function has been called, and it is even possible to intercept the popup request from O’Caml/Perl
because aPopup_request event is triggered just before page generation. There is also a simpler variant of popup windows
that does not go to the server to get the popup page:ui:popup(→ 141).

The generated Javascript function has the namepopup_<page> where<page> is the identifier found in thepage attribute
(see declaration below). The function takes two string arguments. The first argument is the window option list known
from the Javascriptwindow.open function; it specifies the visual properties of the new window. The second argument
is an arbitrary string that is attached to thePopup_request event. By calling the generated function, the window pops
up and requests the referenced page from the server. For example, the following button shows the pagesample in a new
popup window with the specified width and height, and attaches the stringfourty-two to the popup request event:

<ui:popup page="sample"/>
<input type="button" onclick="open_sample(’width=100,height=100’, ’forty-two’)"/>

The page, heresample, must set the attributepopup to yes:

<ui:page name="sample" popup="yes">
...

</ui:page>

This is necessary because the generated HTML code is slightly different from that of normal pages.

After the Javascript function has been called, the following actions happen in turn:

• The current dialog object is copied, and the duplicate is used to generate the popup window. Note that the dialog
variables are not updated from the interactors, i.e. the copied dialog has the same state as the original had when the
main window was generated.

• ThePopup_request event is sent to the copied dialog, and it can be caught from thehandle method. It is allowed
that thehandle method changes the name of the popup page to be displayed (by raisingChange_page, or calling
set_next_page). It is not allowd that thehandle method changes the dialog object, though.

• Of course, theprepare_page method is invoked, too.

• Finally, the popup page is generated.

Keep in mind that the dialog object is copied for the time of the popup generation. If the main window is submitted,
the original object will continue to be the active object, and the duplicate is silently dropped. If the popup window is
submitted, however, the original object will be dropped, and the copy will be used instead for all future interactions!

154



WDialog Manual WDialog / Reference / The UI language / ui:server-popup

The popup window can include interactors like text boxes, selection lists, etc., as well as buttons and hyperlinks. If the
popup window is submitted, the variables of the duplicated dialog are updated from the interactors of the popup page,
the popup window is closed, the main window is discarded (!), the trigerred event is sent to the dialog, and the resulting
page will be displayed in the main window using the copied dialog object as current object. Note that these actions are
very different from what happens for submitted popup windows generated byui:popup. Especially, the interactors of the
main page are not used to update any dialog variables.

If the main window is submitted when there is an open popup window, the popup window is closed, and the underlying
duplicated dialog object is discarded.

It is only possible to have one open popup window at the same time. Trials to open more than one popup window are
silently ignored.

The popup window is automatically closed when any submit button or hyperlink of the main window is pressed, or when
the page currently displayed in the main window is left by other means. In these cases, the user interactions in the popup
window are ignored, and the copied dialog object is dropped.

It is possible to change this behavior by additional Javascript statements:

• You can close the popup window by callingwindow.close() from the popup window, or by calling
close_popup() from the main window. The user interactions in the popup window will be ignored.

• You can force submission of the popup window by callinguiform_submit() from the popup window.

• You can lock the submission of the main window while a popup window is open by setting theONSUBMIT handler
of theui:form element of the main window toreturn lock_popup()

Note that WDialog generates anONUNLOAD handler for the main window and aONSUBMIT handler for the popup window.

59.1 Declaration

Level: Generative element

<!ELEMENT ui:server-popup EMPTY>

<!ATTLIST ui:server-popup
page NMTOKEN #REQUIRED>

It is required that there is aui:form in the current page; however, theui:server-popup element can occur outside the
ui:form element.

59.2 Attributes

• page: The name of the page to display in the popup window. It is required that thepopup attribute of this page is
set to "yes". The Javascript function gets the nameopen_ plus the name of the opened page, e.g.open_menu if the
page is calledmenu.

155



ui:special

Web Path: WDialog / Reference / The UI language / ui:special

60 The element ui:special

The inner nodes of theui:special element are expanded without applying the default output encoding. Normally, every
character data node is HTML-encoded before included into the output stream such that the characters <, >, &, and " are
properly quoted. Insideui:special this quoting is turned off.

60.1 Declaration

Level: Control structure

<!ELEMENT ui:special ANY>

60.2 Sub elements

All page body elements are allowed.

60.3 Example

<ui:page name="sample">
<ui:special>This outputs &amp;nbsp;, a non-breakable space.</ui:special>

</ui:page>

Note that we have to write&amp; because the XML parser requires this. This page generates the string "This out-
puts &nbsp;, a non-breakable space." Without theui:special element, the page would be expanded to "This outputs
&amp;nbsp;, a non-breakable space."

156



ui:string-value

Web Path: WDialog / Reference / The UI language / ui:string-value

61 The element ui:string-value

This element represents a string literal that can be used to set the initial value of aui:variable (→ 170).

61.1 Declaration

Level: Dialog structure

<!ELEMENT ui:string-value (#PCDATA)* >

61.2 Example

<ui:variable name="sample" type="string">
<ui:string-value>the initial value</ui:string-value>

</ui:variable>

157



ui:template

Web Path: WDialog / Reference / The UI language / ui:template

62 The element ui:template

This element defines a template. For an overview, see the chapter aboutTemplates(→ 49).

62.1 Declaration

Level: Control structure

<!ELEMENT ui:template ANY>

<!ATTLIST ui:template
name NMTOKEN #REQUIRED
from-caller NMTOKENS #IMPLIED
from-context NMTOKENS #IMPLIED
xml:lang NMTOKEN #IMPLIED

>

The subelements ofui:template must match the informal rule( ui:default*, %page-body;* ) where
%page-body; stands symbolically for all allowed sub elements. Note that whitespace between the%page-body; ele-
ments counts, but at the other positions it is ignored.

62.2 Attributes

• name: The name of the template. Template names are globally known.

• from-caller: The space-separated list of parameters with lexical scope.

• from-context: The space-separated list of parameters with dynamic scope.

• xml:lang: If present, this attribute defines the language suffix of the template name.

62.3 Sub elements

The sub elementui:default (→ 97) has the special task to define the default values for parameters that are used if the
parameter has not been passed by the caller (lexical scope), or the parameter cannot be found in the context (dynamic
scope).ui:default elements must only occur at the beginning of the template.

The other sub elements may be arbitrary page body elements.

158



WDialog Manual WDialog / Reference / The UI language / ui:template

62.4 Internationalization

If no xml:lang attribute exists, the template is defined with exactly the name as specified by thename attribute.

If there is axml:lang attribute, the template gets a compound name. Thename attribute is the first part, and thexml:lang
attribute is the suffix; the parts are separated by a# character. For example, the template

<ui:template name="foo" xml:lang="en">...</ui:template>

defines the templatefoo#en.

62.5 Example

See the chapterTemplates(→ 49).

159



ui:text and ui:password

Web Path: WDialog / Reference / The UI language / ui:text and ui:password

63 The elements ui:text and ui:password

The elementui:text displays a one-line text input box. The elementui:password displays a password input box. The
difference is that the contents of the password box are invisible (only a string of asterisks). - The generated HTML code
consists of anINPUT element withTYPE=TEXT orTYPE=PASSWORD, whose name attribute is set to a special identifier which
is recognized by the system when the form is submitted.

The text or password box must be tied to a string variable. The contents of the widget is initialized with the current
contents of the variable when the page is displayed. Conversely, the contents of the widget are transferred back to the
variable when the page is submitted.

In the following example, the user can enter a file name. The variablefile_name is initialized with the value "sample.txt",
and because this is the intial value of the variable, this string will also be the initial value of the text widget.

<ui:dialog name="sample" page="sample_page">
<ui:variable name="file_name" type="string">

<ui:string-value>sample.txt</ui:string-value>
</ui:variable>

<ui:page name="sample_page">
<html>

<body>
Please input the file name:
<ui:text variable="file_name"/>
<ui:button name="ok" label="OK"/>

</body>
</html>

</ui:page>
</ui:dialog>

63.1 Declaration

Level: Generative

<!ELEMENT ui:text EMPTY>
<!ELEMENT ui:password EMPTY>

<!ATTLIST ui:text
variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
maxlength CDATA #IMPLIED
size CDATA #IMPLIED

160



WDialog Manual WDialog / Reference / The UI language / ui:text and ui:password

cgi (auto|keep) "auto"
>
<!ATTLIST ui:password

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
maxlength CDATA #IMPLIED
size CDATA #IMPLIED
cgi (auto|keep) "auto"

>

Additionally, ui:text andui:password must only occur insideui:form.

63.2 Attributes

The following attributes have a special meaning:

• variable: Specifies the variable of the current dialog object to which the text/password box is tied. Unless the
index attribute is present, the variable must have string type. If there is anindex attribute, the variable must be an
associative list of strings.

• index: Specifies the index value of the element of the associative variable to which the text/password box is tied.

• maxlength: Specifies the maximum number of characters the input box can accepts.

• size: Specifies the length of the input box in characters.

• cgi: The value "auto" means that the name of the CGI variable associated with the text box is selected automati-
cally. This works perfectly unless you want to refer to this variable from Javascript or from some other manually
written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isvar_ con-
catenated with the name of the variable. However, it is not allowed to specify "keep" if there is also an index value.
Furthermore, the variable name should only contain alphanumeric characters, because not all punctuation characters
can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedINPUT HTML element. This means that especially
onblur, onchange, onfocus, andonselect may be specified.

63.3 Sub elements

Neitherui:text norui:password have sub elements.

63.4 Generated HTML code

Theui:text element generates HTML code which roughly looks as follows:

<input type="TEXT" name="..." value="..." maxlength="..." size="...">

Theui:password element generates something like that:

161



WDialog Manual WDialog / Reference / The UI language / ui:text and ui:password

<input type="PASSWORD" name="..." value="..." maxlength="..." size="...">

162



ui:textarea

Web Path: WDialog / Reference / The UI language / ui:textarea

64 The element ui:textarea

The elementui:textarea displays a multi-line text input box. The generated HTML code consists of aTEXTAREA
element, whose name attribute is set to a special identifier which is recognized by the system when the form is submitted.

The text box must be tied to a string variable. The contents of the widget is initialized with the current contents of the
variable when the page is displayed. Conversely, the contents of the widget are transferred back to the variable when the
page is submitted.

Input boxes generated by ui:textarea are very similar to the boxes generated byui:text (→ 160); the only major difference
is that the boxes accept multi-line texts.

64.1 Declaration

Level: Generative

<!ELEMENT ui:textarea EMPTY>
<!ATTLIST ui:textarea

variable NMTOKEN #REQUIRED
index CDATA #IMPLIED
rows CDATA #IMPLIED
cols CDATA #IMPLIED
wrap (off|hard|soft) "off"
cgi (auto|keep) "auto"

>

Additionally, ui:textarea must only occur insideui:form.

64.2 Attributes

The following attributes have a special meaning:

• variable:Specifies the variable of the current dialog object to which the text box is tied. Unless theindex attribute
is present, the variable must have string type. If there is anindex attribute, the variable must be an associative list
of strings.

• index: Specifies the index value of the element of the associative variable to which the text box is tied.

• rows: Specifies the number of rows the input box displays. Note that this affects only the visual layout of the box,
and does not limit the number of lines the user can enter.

• cols: Specifies the number of columns the input box displays. Note that this affects only the visual layout of the
box, and does not limit the number of columns the user can enter.

163



WDialog Manual WDialog / Reference / The UI language / ui:textarea

• wrap: Specifies the wrapping mode of the box. See HTML documentation for the meaning of the modes.

• cgi: The value "auto" means that the name of the CGI variable associated with the text box is selected automati-
cally. This works perfectly unless you want to refer to this variable from Javascript or from some other manually
written event decoder. The value "keep" causes that the name of the CGI variable is predictable: it isvar_ con-
catenated with the name of the variable. However, it is not allowed to specify "keep" if there is also an index value.
Furthermore, the variable name should only contain alphanumeric characters, because not all punctuation characters
can be safely transported over the CGI protocol.

If there are any other attributes, these are added to the generatedTEXTAREA HTML element. This means that especially
onblur, onchange, onfocus, andonselect may be specified.

64.3 Sub elements

ui:textarea has no subelements (unlike the corresponding HTML element).

64.4 Generated HTML code

Theui:textarea element generates HTML code which roughly looks as follows:

<textarea name="..." rows="..." cols="..." wrap="...">
...
</textarea>

164



ui:translate

Web Path: WDialog / Reference / The UI language / ui:translate

65 The element ui:translate

This element is replaced in the generated HTML output by the corresponding external value of the specified internal value
of a declared enumerator.

The external value is HTML-quoted before being processed; i.e. the characters <, >, &, and " are substituted by the
corresponding HTML entities &lt;, &gt;, &amp;, and &quot;, respectively.

65.1 Declaration

Level: Generative

<!ELEMENT ui:translate EMPTY>
<!ATTLIST ui:translate

type NMTOKEN #REQUIRED
internal NMTOKEN #REQUIRED>

65.2 Attributes

• type: Specifies the name of a declared enumerator type (seeui:enumeration(→ 111)).

• internal: Selects the internal value of the declared enumerator type.

65.3 Sub elements

ui:translate does not have sub elements.

65.4 Example

The following piece of code simply displays "Two":

<ui:dialog name="sample" start-page="sample_page">
<ui:enumeration name="smallnumbers">

<ui:enum internal="1" external="One"/>
<ui:enum internal="2" external="Two"/>
<ui:enum internal="3" external="Three"/>

</ui:enumeration>

<ui:page name="sample_page">

165



WDialog Manual WDialog / Reference / The UI language / ui:translate

<html>
<body>

<ui:translate type="smallnumbers" internal="2"/>
</body>

</html>
</ui:page>

</ui:dialog>

166



ui:true

Web Path: WDialog / Reference / The UI language / ui:true

66 The element ui:true

This element expands simply its inner nodes without transforming them. Furthermore, this element sets the condition
code totrue. The condition code can be evaluated byui:cond(→ 94).

66.1 Declaration

Level: Control structure

<!ELEMENT ui:true ANY>

66.2 Sub elements

This element may contain all page body elements.

66.3 Example

<ui:cond>
<ui:if value1="$x" value2="$[v]">

...do this...
</ui:if>
<ui:if value1="$x" value2="$[w]">

...do that...
</ui:if>
<ui:true>

...else do this...
</ui:true>

</ui:cond>

Becauseui:true sets the condition code always totrue, it can be used as default branch inui:cond. Its contents will
be expanded if all the previous conditions happen to be false.

167



ui:use

Web Path: WDialog / Reference / The UI language / ui:use

67 The element ui:use

This element instantiates a template. For an overview, see the chapter aboutTemplates(→ 49).

67.1 Declaration

Level: Control structure

<!ELEMENT ui:use ( ui:param )* >

<!ATTLIST ui:use
template NMTOKEN #REQUIRED>

67.2 Attributes

• template: Names the template to instantiate. Note that the current language of the dialog may also influence which
template is selected (see below).

67.3 Sub elements

Theui:param(→ 140) elements define the actual values for the lexical parameters

67.4 Internationalization

If a certain language is selected for the dialog, this also affects the template system. In particular, it is first checked if the
used template is defined for this language, and if so, this version of the template will be used. Otherwise, it is checked
whether there is a template withoutxml:lang attribute, and if it can be found, this version will be used.

For more information, see the chapter aboutInternationalization(→ 67).

67.5 The t namespace

Becauseui:use is a quite long notation, there are two ways to abbreviate it. Instead of

<ui:use template="x">
<ui:param name="p1">t1</ui:param>
...
<ui:param name="pN">tN</ui:param>

168



WDialog Manual WDialog / Reference / The UI language / ui:use

</ui:use>

you can also write

<t:x>
<p:p1>t1</p:p1>
...
<p:pN>tN</p:pN>

</t:x>

Furthermore, the parameters can also be passed by attributes if they only consist of unstructured text:

<t:x p1="t1" ... pK="tK">
<p:pJ>tJ</p:pJ>
...
<p:pN>tN</p:pN>

</t:x>

67.6 The q namespace

The other way to abbreviateui:use is theq namespace. Instead of writing

<ui:use template="x">
<ui:param name="p1">t1</ui:param>
...
<ui:param name="pN">tN</ui:param>
<ui:param name="body">tBODY</ui:param>

</ui:use>

(note the fixed namebody) it is also possible to call the template by:

<q:x p1="t1" ... pK="tK">
tBODY

</q:x>

67.7 Example

SeeTemplates(→ 49).

169



ui:variable

Web Path: WDialog / Reference / The UI language / ui:variable

68 The element ui:variable

ui:variable defines an instance variable for the current dialog object. The variable has a name, a type, and an initial
value (the value the variable is automatically set to when the object is created). The variable is assignable ("mutable" in
O’Caml terminology).

It is possible to refer to the current value of variables from the following places:

• Before the HTML page is generated:In theprepare_page callback method of the current dialog object one can
get and set the value of variables by the inherited methodsvariable andset_variable (and some derivates of
these); seeDialogs(→ 22).

• While the HTML page is being generated:There are lots of elements which can refer to variables. Especially,
ui:dynamic(→ 102) allows it to insert the current value of a string value at the current generation position. The
interactor elements such asui:text (→ 160) are tied to variables, i.e. they reflect the current value of variables, and
when the user changes the value of the interactor, the value of the variable will be changed, too.

• When the user event is evaluated:After the user has clicked on a button or hyperlink, one can again get and set the
values of variables by calling the methodsvariable andset_variable in thehandle callback.

Unless the value is explicitly modified, variables retain their values across page changes (like many other properties of
dialog objects).

For an introduction into the type system, seeData types(→ 27).

68.1 Declaration

Level: Dialog structure

<!ENTITY % value-literal "(ui:string-value | ui:enum-value | ui:dyn-enum-value |
ui:alist-value)" >

<!ELEMENT ui:variable ( %value-literal; )? >

<!ATTLIST ui:variable
name NMTOKEN #REQUIRED
type NMTOKEN "string"
associative (yes|no) "no"
temporary (yes|no) "no"
protected (yes|no) "no"

>

There are some restrictions concerning the possible sub elements ofui:variable, see below.

170



WDialog Manual WDialog / Reference / The UI language / ui:variable

68.2 Attributes

• name: Specifies the name of the variable

• type: Specifies the base type of the variable: Eitherstring, dialog, dynamic-enumerator, or the name of a
declared enumerator (seeui:enumeration(→ 111)). The default is "string".

• associative: Whether the variable is associative or not; the default is that the variable is not associative.

• temporary: Whether the variable is temporary or not. A temporary variable is reset to its initial value during
a page change (unless the variable is tied to an interactor). This means that you can still set the variable in the
prepare_page method and refer to it from elements; but in the followinghandle invocation the variable will be
found reset to its initial value. The intention of this option is to avoid that large variables are transported from one
page to another in hidden HTML fields although the variables are only needed to generate dynamic contents. Note
that interactor variables (i.e. variables tied to an interactor element) are already transported by the interactor, and so
thetemporary declaration has no effect.

The default is that variables are not temporary.

• protected: A protected variable cannot be changed by CGI arguments. Sometimes it is necessary to prevent the
users from changing variables because they contain trusted data. The recommended method to achieve this requires
two steps: First, the variables must be declared withprotected="yes". Second, a session manager must be used
that protects the state from user manipulations (note that the session manager that is enabled by default does not
provide such protection).

68.3 Sub elements

The sub element of theui:variable contains the initial value of the variable. The initial value is the value the variable
is initialized with when the containing dialog object is created. If no initial value is specified, the following values apply:

• For non-associative string variables: The empty string

• For non-associative enumerator variables: The empty enumerator (empty set)

• For non-associative dynamic enumerator variables: The empty enumerator (empty set)

• For non-associative dialog variables: The valueNone

• For associative variables: The empty associative list

If an initial value is specified, the sub element defining the value must correspond to the type of the variable:

• For non-associative string variables: The default value must be defined byui:string-value(→ 157).

• For non-associative enumerator variables: The default value must be defined byui:enum-value(→ 107).

• For non-associative dynamic enumerator variables: The default value must be defined byui:dyn-enum-value(→
101).

• For non-associative dialog variables: It is not possible to define default values for dialog variables.

• For associative variables: The default value must be defined byui:alist-value(→ 84).

171



WDialog Manual WDialog / Reference / The UI language / ui:variable

68.4 Example

<ui:dialog name="sample" ...>
<ui:variable name="person">

<ui:string-value>Peter</ui:string-value>
</ui:variable>
...
<ui:page name="sample">

<html>
<body>

My name is <ui:dynamic variable="person"/>.
</body>

</html>
</ui:page>

</ui:dialog>

172



t:*, q:*, and p:*

Web Path: WDialog / Reference / The UI language / t:*, q:*, and p:*

69 The namespaces t, q, and p

Elements liket:name, q:name, andp:name (wherename is an arbitrary identifier) can be used as abbreviations for the
ui:use(→ 168) andui:param(→ 140) elements. See there for explanations and examples.

173



l:*

Web Path: WDialog / Reference / The UI language / l:*

70 The namespace l

Elements likel:name (wherename is an arbitrary identifier) can be used as abbreviations forui:iflang (→ 122) elements.
See there for explanations and examples.

174



$param

Web Path: WDialog / Reference / The UI language / $param

71 Template parameters $param

Template parameters can be written as$param (i.e. an identifier prefixed by a dollar character), or as${param} (i.e.
additional braces). There is also the variant${param/enc} containing an additional output encoding. All these parameters
must be imported into the current template or page definition byfrom-caller or from-context attributes, see the
elementsui:template(→ 158) andui:page (→ 135). For an overview how template parameters work see the chapter
aboutTemplates(→ 49).

The parameters$int and$extplay a special role in the context of iterations. They need not to be imported into the current
context, as they are automatically set for every iteration. See the elementsui:iterate (→ 132) andui:enumerate(→ 108)
for details.

175



$[expr]

Web Path: WDialog / Reference / The UI language / $[expr]

72 Bracket expressions $[...]

Bracket expressions allow the UI developer to access dialog variables from page or template definitions (i.e. everywhere
the dollar character is recognized as meta symbol). For example,$[v] would expand to the current value of the dialog
variablev. Of course, this works only if this variable is a string variable, as it would be unclear what to do with a non-string
value (e.g. an enumeration).

So far, so simple. In recent versions of WDialog, the brackets cannot only contain variable names but whole expressions
that are computed when the bracket is expanded. For instance, the expression$[card(v)] expands to the number of
words in the stringv. There are a number of functions that can be applied to variables (see below). The syntax of function
calls always includes parantheses, sox is a variable, andx() is a function call. Functions may have several arguments,
separated by commas, e.g.f(x1,x2,x3).

Of course, the card function is not only reasonable for strings. We can also define the cardinality of enumerator values,
and of associative lists. Because of this it is allowed to write$[card(v)] whenv is an enumerator or alist. In general, the
intermediate values during evaluation may be of any type that can be stored in a dialog variable; however the final value
must be a string as the result is inserted into the XML tree8. Typing is dynamic, and although the functions usually only
accept certain types as arguments it is not tried to verify that by a type checker.

It is not only possible to access variables, but also template parameters. The dollar character must prefix the parameter
name, e.g.$[$p]. Braces are allowed, and even output encodings can be specified:$[${p}] and$[${p/html}] are
legal expressions. The parameters are evaluated to strings (as if they would occur in attribute context). A number of UI
control elements are expanded allowing one to mix template-level and dialog-level evaluation strategies. For example, the
templatet2 expands to thesizeof the expanded templatet1:

<ui:template name="t1">
This is a text

</ui:template>

<ui:template name="t2" from-caller="which">
<ui:default param="which"><ui:use template="t1"/></ui:default>
$[card($which)]

</ui:template>

The expanded text is4, the number of words int1.

We have mentioned variables, functions, parameters. Is it possible to include constant values into bracket expressions?
Yes, but the current implementation is quite limited. Numbers can be used literally, e.g.$[add(n,2)]. It is also possible
to construct strings of words using thewords form, e.g. $[words(a,b,c)] is the string "a b c". The words must be
syntactically names. It is not (yet) possible to include arbitrary string constants or any non-string constants. These may
be added later.

8It may be possible to also allow XML tree types here, but such types do not occur in the rest of the UI language. This is an interesting idea for a
future extension of the language, though.

176



WDialog Manual WDialog / Reference / The UI language / $[expr]

Another important syntactic note:Bracket expressions must not contain white space!They are not even recognized by the
parser if they do.

There are also some boolean functions. The value 0 is considered as the false value, and numbers other than 0 are
considered as true values.

Now the list of functions that are defined by default:

• id(expr): Just returnsexpr (identity)

• length(str): Returns the number of characters of the stringstr

• card(expr): If expr is a string, this function returns the number of words. Ifexpr is an enumerator or associative
list, this function returns the number of elements. This definition of cardinality is just the same as that of ui:iterate.

• size(expr): Deprecated!If expr is a string, this function returns the number of characters. Ifexpr is an enumer-
ator or associative list, this function returns the number of elements.

• add(num1,...,numN): Adds all the numbers passed as arguments and returns the sum.

• sub(num1,...,numN): Subtracts the second and all following arguments from the first argument, and returns the
difference.

• mul(num1,...,numN): Multiplies all the numbers passed as arugments and returns the product.

• div(num1,...,numN): Divides the first number through the second number and all following numbers (in turn),
and returns the quotient.

• modulo(num1,...,numN): Divides the first number through the second number and takes the modulus, and con-
tinues with the following numbers in turn, and returns the final modulus.

• assoc(alist,str): Looks up thestr argument in the associative listalist, and returns the value that corre-
sponds to thestr key. Of course,str must be a string. It is an error ifstr does not occur inalist.

• nth(alist,num): Returns thenumth value of the associative listalist, i.e. num is the ordinal number of the value
to return. The first value has the ordinal number 0. It is an error ifnum is greater or equal than the number of
elements ofalist.

• contains(container,str): Returns 1 if the first argument contains the second argument, and 0 otherwise. The
second argument must be a string value. The function is defined as follows: If thecontainer is a string, it is split
up into a list of words, and it is tested whetherstr occurs in the list of words. If thecontainer is a declared
enumerator, it is tested whether the value includesstr as item. If thecontainer is a dynamic enumerator, it is
tested whether the value includesstr as internal item. If thecontainer is an associative list, it is tested whether
the value includesstr as index.

• mentions(container,str): Returns 1 if the first argument contains the second argument, and 0 otherwise. The
second argument must be a string value. The function is defined as follows: If thecontainer is a dynamic
enumerator, it is tested whether the value includesstr as external item. If thecontainer is an associative list, it is
tested whether the value includesstr as mapped value.

• translate(dynenum,str): Returns the external value that corresponds to the internal valuestr in the dynamic
enumeratordynenum. It is an error ifstr does not occur as internal value indynenum.

• translate(enum(name),str): Returns the external value that corresponds to the internal valuestr in the de-
clared enumerator typename (i.e. the name in aui:enumeration declaration). It is an error ifstr does not occur
as internal value in the enumeration. See below for explanations of theenum form.

• rev-translate(dynenum,str): Returns the (first) internal value that corresponds to the external valuestr in the
dynamic enumeratordynenum. It is an error ifstr does not occur as external value indynenum.

177



WDialog Manual WDialog / Reference / The UI language / $[expr]

• rev-translate(enum(name),str): Returns the (first) internal value that corresponds to the external valuestr in
the declared enumerator typeenum (i.e. the name in aui:enumeration declaration). It is an error ifstr does not
occur as external value in the enumeration. See below for explanations of theenum form.

• eq(str1,str2): Returns 1 if both strings are equal, and 0 otherwise

• ne(str1,str2): Returns 1 if the strings are not equal, and 0 otherwise

• match(str1,str2): Returns 1 if the stringstr1 matches the regular expressionstr2, and 0 otherwise

• nomatch(str1,str2): Returns 1 if the stringstr1 does not match the regular expressionstr2, and 0 otherwise

• substring(str,num1): Returns the substring ofstr starting at character positionnum1 until the end of the string.

• substring(str,num1,num2): Returns the substring ofstr starting at character positionnum1 with lengthnum2
(the length can be negative).

• concat(str1,...,strN): Concatenates the stringsstr1 to strN.

• int-eq(num1,num2): Returns 1 if both numbers are equal, and 0 otherwise

• int-ne(num1,num2): Returns 1 if the numbers are not equal, and 0 otherwise

• int-lt(num1,num2): Returns 1 ifnum1 < num2, and 0 otherwise

• int-le(num1,num2): Returns 1 ifnum1 <= num2, and 0 otherwise

• int-gt(num1,num2): Returns 1 ifnum1 > num2, and 0 otherwise

• int-ge(num1,num2): Returns 1 ifnum1 >= num2, and 0 otherwise

• int-min(num,...): Returns the minimum of all passed numbers

• int-max(num,...): Returns the maximum of all passed numbers

• int-abs(num): Returns the absolute value

• int-sign(num): Returns the sign of the number

• card-eq(container,num), card-ne(container,num), card-lt(container,num),
card-le(container,num), card-gt(container,num), card-ge(container,num): These functions compare
the cardinality ofcontainer with the number. The cardinality is defined as for thecard function.

• height(str): Returns the number of lines the stringstr consists of. A line is separated from the next one by
either LF, CR, or CRLF bytes. The number of lines is the number of these line separators plus 1.

• width(str): Returns the number of characters the longest line in stringstr consists of. The line separators are
not counted for the width.

• dialog_exists(dlg): Returns 1 if the dialog exists, 0 otherwise

• and(bool,...): Returns 1 if all arguments are non-zero integers, and 0 otherwise. This function is evaluated
lazily.

• or(bool,...): Returns 1 if there is a non-zero integers as argument, and 0 otherwise. This function is evaluated
lazily.

• not(bool): Returns 1 if the argument is 0, and 0 if the argument is non-zero.

• true(): Returns 1

• false(): Returns 0

178



WDialog Manual WDialog / Reference / The UI language / $[expr]

• if(bool,true_arg,false_arg): If bool is a non-zero number, the value oftrue_arg is returned. If 0, the value
of false_arg is returned. This function is evaluated lazily.

• var(str): Returns the contents of the dialog variable calledstr. (This function can be used to access variables
indirectly.)

• dialog(): Returns the name of the current dialog.

• self(): Returns the current dialog.

• page(): Returns the name of the current page.

• language(): Returns the current language, or the empty string if none is selected.

• self-base-url(): Return the URL pointing to the current script (omitting any URL parameters)

• session-id(): Returns the session ID without checksum

• create-anchor-event(str): Add the anchor event source calledstr, and return the HTML-level identifier.

• create-xanchor-event(str1,str2): Add the anchor event source calledstr1 for indexstr2, and return the
HTML-level identifier.

Furthermore, there are the following special forms, i.e. syntactic elements evaluated in a special way:

• type(var): Returns the name of the type of the variablevar. The argument is not expanded before evaluation of
the form, but taken literally, e.g.type(x) returns the type of the variablex, and not the type of the variable whose
name is stored in the variablex. The return value is a string:

– "string" is the type name of string variables

– "dialog" is the type name of dialog variables

– "dynamic-enumerator" is the type name of dynamic enumerator variables

– The name of the enumeration is the type name of enumerator variables

The type name is what theui:variable (→ 170) element declares with thetype argument.

It does not matter whether the variable is associative or not.

• is-associative(var): Returns whether the type of the variablevar is associative or not. Like thetype form,
the argument is taken literally. The return value is either the string"yes" or "no".

• default(var): Returns the default value used to initialize the variablevar when the dialog object is created. Like
thetype form, the argument is taken literally. The return value is a value of appropriate type.

• enum(name): Returns the declaration of the enumerationenum as a dynamically enumerated value. The argument
is taken literally.

• words(name,...): Returns the string containing the names literally (i.e. the concatenated names separated by
spaces). The arguments are taken literally.

Numbersare represented as decimal strings.

As strings can contain multi-byte characters, the question arises whether the string functions take the number of bytes or
the number of characters as "position" or "length". Of course, characters are counted, so the user does not have to take
care of the character encoding.

179



Dot notation (v1.v2)

Web Path: WDialog / Reference / The UI language / Dot notation (v1.v2)

73 The dot notation

Variables can be declared with typedialog, and because of this it is possible that a dialog stores a subdialog in a variable.
The question arises how you can access subdialogs like in:

<ui:dialog name="calling_dialog" start-page="...">
...
<ui:variable name="v" .../>
...
<ui:page name="calling_page">

...
As in many other dialogs, you can now go to our
<ui:a name="call_event">special dialog</ui:a>.
...

</ui:page>
</ui:dialog>

<ui:dialog name="called_dialog" start-page="called_page">
...
<ui:variable name="caller" type="dialog"/>
...
<ui:page name="called_page">

...
You can now do ... this ... and ... that.
<ui:a name="return_event">Return to previous dialog.</ui:a>
...

</ui:page>
</ui:dialog>

(See the section aboutData types(→ 27), it discusses the same example from another view.) Of course, when the calling
dialog instantiates the called dialog, it stores itself into the dialog variablecaller, so the previous dialog is preserved,
and can be reactivated when the user wants to return. The variablecaller is not only an abstract container for the original
dialog, because it is possible to access the contents of the calling dialog from the called dialog by using thedot notation.
For example, the variablev is available under the namecaller.v, i.e. the name is prefixed by the name of the variable
storing the dialog, separated by a dot. You can use the dot notation everywhere a variable is referenced, e.g.

<ui:dynamic variable="caller.v"/>

or just

180



WDialog Manual WDialog / Reference / The UI language / Dot notation (v1.v2)

${caller.v}

It is even possible to access variables from O’Caml (or Perl) by the dot notation:

let v = dlg # string_variable "caller.v" in
...

Note that a dialog variable is either empty (orNone in O’Caml), or filled (Some dlg in O’Caml). Because of this, the
"dot" access can cause an error condition when the dialog variable is empty.

181



The standard UI library

Web Path: WDialog / Reference / The standard UI library

74 The standard UI library

There are a number of predefined templates that can be used by application programmers.

• wd-null: This template expands to the empty string.

• wd-int: This template expands to the value of the parameter$int. It is intended to be used in iterators like
ui:iterate:

<ui:iterate template="wd-int" variable="x">
<ui:iter-separator>, </ui:iter-separator>

</ui:iterate>

This example iterates over the contents ofx (either a dynamic enumerator or an associative variable), and prints the
internal values, separated by commas.

• wd-ext: This template expands to the value of the parameter$ext. It is intended to be used in iterators like
ui:iterate:

<ui:iterate template="wd-ext" variable="x">
<ui:iter-separator>, </ui:iter-separator>

</ui:iterate>

This example iterates over the contents ofx (either a dynamic enumerator or an associative variable), and prints the
external values, separated by commas.

• wd-doctype-html401-strict: Expands to the DOCTYPE line for the strict HTML 4.01 DTD.

• wd-doctype-html401-transitional: Expands to the DOCTYPE line for the transitional HTML 4.01 DTD.

• wd-doctype-html401-frameset: Expands to the DOCTYPE line for the HTML 4.01 frameset DTD.

• wd-doctype-html40-strict: Expands to the DOCTYPE line for the strict HTML 4.0 DTD.

• wd-doctype-html40-transitional: Expands to the DOCTYPE line for the transitional HTML 4.0 DTD.

• wd-doctype-html40-frameset: Expands to the DOCTYPE line for the HTML 4.0 frameset DTD.

• wd-doctype-html32: Expands to the DOCTYPE line for the HTML 3.2 DTD.

• wd-doctype-html20: Expands to the DOCTYPE line for the HTML 2.0 DTD.

182



WDialog API (O’Caml)

Web Path: WDialog / Reference / WDialog API (O’Caml)

75 WDialog API for O’Caml

This part of the manual has been generated by Maxence Guesdon’s excellent documentation toolocamldoc. You find the
interesting part underModules(→ 184).

183



Modules

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules

76 Modules

The important modules for application programmers are:

• Wd_types(→ 205): Defines the fundamental types

• Wd_dialog(→ 187): Contains the base classdialog from which the programmer’s dialog classes should inherit

• Wd_template(→ 200): Access to template definitions, including the possibility to instantiate templates and convert
them to strings.

• Wd_cycle(→ 186): Processes a CGI request and computes the response, i.e. this is the entry point to request
processing

• Wd_transform(→ 204): Here are the functions to load the UI file (it mainly contains the transformation engine, but
this is hidden)

• Wd_run_cgi(→ 196): A sample main program for CGI scripts (can be used instead of callingWd_cycle and
Wd_transform directly).

• Wd_run_jserv(→ 197): A sample main program for JSERV servlets (can be used instead of callingWd_cycle and
Wd_transform directly).

184



Wd_application_dtd

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_application_dtd

77 WDialog API for Objective Caml: Wd_application_dtd

78 ModuleWd_application_dtd : Contains the DTD of the UI language

val dtd_1 : string

The WDialog DTD version 1 as string

val dtd_2 : string

The WDialog DTD version 2 as string

185



Wd_cycle

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_cycle

79 WDialog API for Objective Caml: Wd_cycle

80 Module Wd_cycle : The scope of the moduleWd_cycle is the whole CGI
cycle, from the moment when the CGI request has just arrived until the
moment just before the CGI response is delivered to the client.

val process_request :
?session_manager:Wd_types.session_manager_type ->
?self_url:string ->
?response_header:Wd_types.response_header ->
Wd_types.universe_type -> Netcgi_types.cgi_activation -> unit

This is the main function processing requests coming from the browser. It expects a CGI environment, interprets
the CGI variables and performs one request cycle:

• The old object is restored (deserialized)

• The variables are updated that are bound to interactors, i.e. the user modifications are propagated to these
variables

• The current event is determined by checking which button or link has been clicked

• The methodhandle of the object is invoked

• The result ofhandle is interpreted

• The methodprepare_page is invoked on the (probably next) object

• The HTML code for the selected page is generated The resulting HTML code is written to the output channel
of thecgi_activation object passed to this function.

For more details of the request cycle, see the documents standard-cycle.txt and popup-cycle.txt.

val make_environment : Netcgi_types.cgi_activation -> Wd_types.environment

Creates an (otherwise empty) environment with the passed CGI activation object.

186



Wd_dialog

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_dialog

81 WDialog API for Objective Caml: Wd_dialog

82 ModuleWd_dialog : This module defines the base classdialog from which
all dialog classes should inherit

val dump_interactors : Format.formatter -> Wd_types.interactors -> unit

Prints a readable description of the contents of theinteractors argument to the passedformatter. This
function is a valid printer for the toplevel and the debugger.

class virtual dialog : Wd_types.universe_type -> string -> Wd_types.environment ->

object

inherit Wd_types.dialog_type [104]

This class implementsdialog_type

82.0.1 The following private methods are shortcuts for theWd_template[98] module.

method private t_get : string -> Wd_template.template

Returns the template

method private t_apply :
Wd_template.template -> (string * Wd_template.tree) list -> Wd_template.tree

Applies the template, and passes the parameters to it

method private t_apply_byname :
string -> (string * Wd_template.tree) list -> Wd_template.tree

Applies the named template, and passes the parameters to it

method private t_apply_lazily :
string -> (string * Wd_template.tree) list -> Wd_template.tree

Constructs the expression that applies the names template on demand.

method private t_concat :
Wd_template.tree -> Wd_template.tree list -> Wd_template.tree

Concatenates thetree list, and put the separatortree between the parts

method private t_empty : Wd_template.tree

The empty XML tree

187



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_dialog

method private t_text : string -> Wd_template.tree

The XML tree containing this text

method private t_html : string -> Wd_template.tree

The XML tree containing this HTML material

method private t_to_string : Wd_template.tree -> string

Evaluates the XML tree in the current environment, and returns the corresponding output string (HTML
code)

method private put_tree : string -> Wd_template.tree -> unit

Sets thestring variable to the string representation of thetree

end

The classdialog is the implementation ofWd_types.dialog_type[104] that should be used as base definition
for all dialog objects. This class defines all methods buthandle andprepare_page - these must be defined in the
subclasses provided by the application programmer. Furthermore, there are some extensions to
Wd_types.dialog_type[104] realized as private methods to simplify access to templates. These additional
methods begin witht_, but are otherwise named like the corresponding function in the moduleWd_template[98].

The class takes three anonymous parameters:

• The universe for which the dialog is defined

• The name of the dialog in the UI definition

• The environment of the current CGI activation

Construction new dialog universe name env: Makes a new dialog calledname which is bound to theuniverse

Normally, the classdialog is not used directly. It is intended to inherit fromdialog, and to define the two methods
prepare_page andhandle; these are virtual in the base class:

class my_dialog universe name env =
object (self)

inherit dialog universe name env
method prepare_page = ...
method handle = ...

end

After defining such a class, you can create a newmy_dialog by new my_dialog universe "my_dialog" env. How-
ever, it is not recommended to do it this way. The moduleWd_universe[108] includes a registry of constructors, and
every dialog should put its constructor into it:

universe # register "my_dialog" (new my_dialog)

For example, you can place this statement where you callWd_run_cgi.run[90]:

let universe = new Wd_universe.universe in
universe # register ...;
Wd_run_cgi.run ... ~universe

After the dialog has been registered, you can create new instances of the dialog by callinguniverse#create:

let dlg = universe # create env "my_dialog"

class instant_session_manager : unit -> Wd_types.session_manager_type

188



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_dialog

The "instant" session manager serializes the state of the dialog, and includes it literally into the HTML form. The
serialized string is included in the generated HTML forms, and passed by CGI parameter from one activation to
the next activation. The advantages are that you need not to set up any database to store the sessions, and that the
session state is included in the history of the browser. The disadvantages are increased network traffic, and missing
protection of the session data (the end user can decode the session state), i.e. the class is insecure, and should only
be used in trusted environments.

exception Invalid_session_checksum

Raised when the session checksum as stored in the database is not the same that is transmitted by the browser. This
normally means that a historic page was submitted ("Back" button).

exception Session_not_found

Raises when the current session was not found in the database.

class database_session_manager : ?private_key:string -> ?enable_checksum:bool -> allocate:(unit -> int) -> insert:(int -> string -> unit) -> update:(int -> string -> string -> string -> unit) -> lookup:(int -> string -> string * string) -> unit -> Wd_types.session_manager_type

The database session manager allows it to store the contents of sessions in databases. The database table should
consist of rows with at least the four columns

• id: The row identifier chosen by the database system. This is an integer

• skey: The secure key consists of 32 hex digits, and is another identifier for the row that is chosen by WDialog

• value: The value is a large BASE64-encoded string. The length depends on the session size

• checksum: A checksum ofvalue, again 32 hex digits

Note that sessions stored in databases behave differently with respect to the history function of the browser. It is
not possible to "go back", or to select historic pages otherwise, and submit them again. This will be detected by the
database_session_manager, and the exceptionInvalid_session_checksum will be raised. There is currently
no way to turn this check off, nor to make the check more fine-grained. (Maybe an implementation with multiple
versions of the same session is the way to go, I don’t know yet.)

Thedatabase_session_manager does never delete sessions. It is recommended to remove unused sessions after
a timeout period.

For a transaction-based DBMS, it is sufficient if theupdate function commits the current transaction.

189



Wd_dictionary

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_dictionary

83 WDialog API for Objective Caml: Wd_dictionary

84 ModuleWd_dictionary : Dictionaries are maps from string to any type.

See the moduleMap of the standard library for details.

type +’a t

val empty : ’a t

val add : string -> ’a -> ’a t -> ’a t

val find : string -> ’a t -> ’a

val remove : string -> ’a t -> ’a t

val mem : string -> ’a t -> bool

val iter : (string -> ’a -> unit) -> ’a t -> unit

val map : (’a -> ’b) -> ’a t -> ’b t

val mapi : (string -> ’a -> ’b) -> ’a t -> ’b t

val fold : (string -> ’a -> ’b -> ’b) -> ’a t -> ’b -> ’b

val of_alist : (string * ’a) list -> ’a t

Convert the passed associative list to the corresponding dictionary

val to_alist : ’a t -> (string * ’a) list

Convert the dictionary to an associative list

190



Wd_encoding

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_encoding

85 WDialog API for Objective Caml: Wd_encoding

86 ModuleWd_encoding : This module contains the output encodings.

The encodings are functions fromstring to string. They are usually entered into the application by default (see the
methodoutput_encoding of the Wd_types.application_type[104]), and accessible by<ui:encoding> and other
elements of the UI language.

The functions defined here assume that an ASCII-compatible character set is used.

val encode_as_html : string -> string

Encodes strings as HTML:

• ’<’ becomes&lt;

• ’>’ becomes&gt;

• ’"’ becomes&quot;

• ’&’ becomes&amp;

All other characters remain unchanged.

From<ui:encoding>, this function is accessible under the namehtml.

val encode_as_pre : string -> string

Does the following encoding:

• ’ ’ becomes&nbsp;

• ’\\n’ becomes<br>

• ’\\t’ is expanded to a sequence of&nbsp;, tab width is 8

All other characters remain unchanged.

From<ui:encoding>, this function is accessible under the namepre.

val encode_as_para : string -> string

Multiple linefeeds are replaced by<p>.

From<ui:encoding>, this function is accessible under the namepara.

val encode_as_js_string : string -> string

Encodes strings such that they can be placed between quotes in Javascript.

• ’\\’ becomes backslash backslash

• ’"’ becomes backslash double-quotes

• ”’ becomes backslash single-quote

191



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_encoding

• ’<’ becomes \\x3c

• ’%’ becomes \\x25

The characters 0 to 31 and 127 become \\xHH All other characters remain unchanged.

From<ui:encoding>, this function is accessible under the namejs.

val encode_as_js_longstring : enc:Pxp_types.rep_encoding -> string -> string

Similar toencode_as_js_string, but an additional rules prevents that long lines result. (Javascript interpreters
often cannot cope with long lines.) The string is split up into pieces p1,. . .,pN and these are connected by p1" + \\n
"p2" + \\n . . . + \\n "pN

From<ui:encoding>, this function is accessible under the namejslong.

It is required to pass the character encoding of the strings as argumentenc. In the case the encoding uses
multi-byte character representations, it is avoided to break up these characters.

Note that you can combine the various encodings to get new effects. Reasonable combinations are:

• encode_as_html then encode_as_pre

• encode_as_html then encode_as_para

• encode_as_html then encode_as_para then encode_as_pre

• encode_as_html then encode_as_js_string

• encode_as_html then encode_as_js_longstring

. . . and more

192



Wd_interactor

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_interactor

87 WDialog API for Objective Caml: Wd_interactor

88 ModuleWd_interactor : This module provides a data type for containers
of interactor descriptions.

The background of the module is that interactors (such as input elements, hyperlinks, buttons) are referred to by two
different naming schemes. On the one hand, the interactor elements in the ui file have a name and and optionally an index;
e.g.

<ui:button label="Press here" name="my_button" index="1"/>

or

<ui:text variable="x" index="5"/>

Often the name/index pair is actually a variable/index pair because the interactor is bound to a certain instance variable of
the uiobject. \- On the other hand, the interactors are transformed to HTML code, and the HTML/CGI name is different.
For example the following HTML output might have been generated:

<input type="button" name="xbutton_25" value="Press here">

or

<input type="text" name="var_12" value="...">

Obviously, the HTML/CGI names are automatically chosen. Of course, there is a bijective mapping from the internal
names to the HTML/CGI names, and the task of the Interactor.t type is to manage these mappings.

A value of type Interactor.t contains the following:

• A list of name/index pairs

• The corresponding HTML/CGI identifiers. Only the identifier after the prefix (such as "var_" or "xbutton_") is
stored.

• The bijection which name/index pair corresponds to which identifier.

• For every name/index pair (or every identifier) there may be another arbitrary value which can store additional
information related to the interactor

Example

let ia = create();; (* : unit Interactor.t *)
...
let id = add ia "my_button" "1" None ();; (* = "25" *)

Note that the "25" is an automatically created identifier (just the next free number), and that the HTML/CGI name will be
composed of a prefix indicating the type of the interactor and the identifier, e.g. "xbutton_25".

If we try to add the same name/index pair a second time, the add operation raises an exception:

193



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_interactor

add ia "my_button" "1" None ();;

==> raisesElement_exists "25"

When the incoming CGI parameters are analyzed, it must be possible to look up the name/index pair for a given identifier.
For example:

let (name,index,value) = lookup ia "25";; (* = ("my_button", "1", () *)

There is no reverse lookup operation. However, it is at least possible to test the existence of a given name/index pair:

exists ia "my_button" "1" yieldstrue

As a last resort, it is possible to iterate over all members of the ia value:

let print id name index value =
printf "ID=%s name=%s index=%s\n" id name index

in
iter print ia

Selecting the identifier manually

If the ui element contains thecgi="keep" attribute, and there is no index component, the CGI name retains the orignal
name. For example:

<ui:button label="Press here" name="press" cgi="keep"/>

The generated HTML code:

<input type="button" name="button_press" value="Press here">

Such an interactor would be added as follows:

let id = add ia "press" "" (Some "press") ();; (* = "press" *)

I.e. you can determine the identifier by passing it as fourth argument. Of course, in this case it is checked whether the
identifier is still free; andadd fails if the identifier was already previously used.

Representation

Note that the representation ofInteractor.t is optimized for efficient serialization (using the Marshal module). Es-
pecially, if there are many name/index pairs differing only in the index component, the name component is stored only
once.

Further information

SeeWd_types.interactors[104]

type ’a t

The type of interactors

type id = string

Interactors are identified by strings

exception Element_exists of id

Raised by some functions if there is already a component with the ID

val create : ’a -> ’a t

create x: Creates a new interactor manager. The valuex must only be passed because of typing restrictions.

val clear : ’a t -> unit

194



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_interactor

clear ia: Removes all entries from the interactor. The sequence generator for the automatic IDs is not reset,
however.

val add : ’a t ->
string -> string -> id option -> ’a -> id

add ia name index opt_id value: adds the triple(name,index,value) to ia; if opt_id is None, the triple
gets an automatically selected numerical ID; ifopt_id is Some id, the triple has the IDid. The function returns
the ID.

Fails withElement_exists if the pair(name,index) is already contained. The argument of this exception is the
ID.

val lookup : ’a t -> id -> string * string * ’a

lookup ia id: looks up the triple(name,index,value) for the IDid within ia.

Fails with "Interactor.lookup" if the id cannot be associated.

val exists : ’a t -> string -> string -> bool

exists ia name index: returns whether the pair(name,index) exists inia.

val iter : (id -> string -> string -> ’a -> ’b) ->
’a t -> unit

iter f ia: iterates over the elements ofia and invoke the functionf for every element byf id name index
value.

val serialize : (’a -> string) -> Buffer.t -> ’a t -> unit

serialize f b ia: Writes the serialization ofia to bufferb. Contained values are serialized by callingf.

val unserialize :
((’a, ’b, ’c) Wd_serialize_types.poly_ds_buf -> ’d) ->
(’a, ’b, ’c) Wd_serialize_types.poly_ds_buf -> ’d t

unserialize f buf: Reads the serialized string frombuf and reconstructs the interactors. Values are read by
callingf.

195



Wd_run_cgi

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_run_cgi

89 WDialog API for Objective Caml: Wd_run_cgi

90 ModuleWd_run_cgi : This module contains a customizable main program
for CGIs

val adjust_gc : unit -> unit

Adjust the garbage collector for short-living processes. This is recommended if used in a CGI environment.

val run :
?charset:Pxp_types.rep_encoding ->
?script:string ->
?self_url:string ->
?uifile:string ->
?session_manager:Wd_types.session_manager_type ->
?no_cache:bool ->
?error_page:(Netchannels.out_obj_channel -> exn -> unit) ->
?cgi:Netcgi_types.cgi_activation ->
?response_header:Wd_types.response_header ->
?reg:(Wd_types.universe_type -> unit) -> unit -> unit

A customizable "main program" which processes CGI requests and generates responses. It includes support for
error handling.

The simplest way to make a working CGI program is to callrun ˜reg (); the argument̃reg registers the dialog
classes. The other arguments have reasonable defaults for a normal CGI environment.

The function passed tõreg gets the universe as argument. Its task is to register the dialog classes by calling the
methodregister of the universe.

run loads the UI file, initializes the CGI environment, processes the request (seeWd_cycle[80]), and generates the
response. If an error happens, an error page is generated describing the exception. The optional arguments modify
the standard behaviour:

196



Wd_run_jserv

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_run_jserv

91 WDialog API for Objective Caml: Wd_run_jserv

92 Module Wd_run_jserv : This module contains a customizable main pro-
gram for application servers connected with the JSERV protocol

val create_request_handler :
?charset:Pxp_types.rep_encoding ->
?session_manager:Wd_types.session_manager_type ->
?no_cache:bool ->
?error_page:(Netchannels.out_obj_channel -> exn -> unit) ->
?response_header:Wd_types.response_header ->
?reg:(Wd_types.universe_type -> unit) ->
uifile:string -> unit -> Netcgi_jserv_app.request_handler

This function creates a request handler for a JSERV-based application server. Use this function like in this
example:

let req_hdl = create_request_handler ... () in
let server = ‘Forking(20, [ "appname", req_hdl ]) in
Netcgi_jserv.jvm_emu_main

(Netcgi_jserv_app.run server ‘Ajp_1_2)

This main program creates a "forking server" that starts a new subprocess (up to 20) for every arriving request.
This is currently the recommended mode. It sounds a bit like CGI, but is much faster because the subprocess is
already initialized when it forks.

The application is accessible under the URLhttp://yourserver/servlets/appname. It is possible to bind
several request handlers at the same time.

Call the functioncreate_request_handler as follows:

let req_hdl = create_request_handler ~reg ~uifile ()

The argument̃reg registers the dialog classes (like in Wd_run_cgi). The argument˜uifile must be the absolute
path of the UI definition. The suffix of this file must be ".ui" or ".ui.bin".

197



Wd_run_fcgi

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_run_fcgi

93 WDialog API for Objective Caml: Wd_run_fcgi

94 Module Wd_run_fcgi : This module contains a customizable main pro-
gram for application servers connected with the fastcgi protocol

val create_request_handler :
?charset:Pxp_types.rep_encoding ->
?session_manager:Wd_types.session_manager_type ->
?no_cache:bool ->
?error_page:(Netchannels.out_obj_channel -> exn -> unit) ->
?response_header:Wd_types.response_header ->
?reg:(Wd_types.universe_type -> unit) ->
uifile:string -> unit -> Netcgi_types.cgi_activation -> unit

This function creates a request handler for a fastcgi-based application server. Use this function like in this example:

Netcgi_fcgi.serv (Wd_run_fcgi.create_request_handler ˜session_manager: (new memory_session_manager)
˜charset:‘Enc_utf8 ˜reg ˜uifile:"adder.ui" ()) buffered_transactional_optype

This main program creates a single threaded (single process) server which handles requests sequentially. Since fastcgi
processes are managed by an application server, this is the only mode provided. The application server can then be
configured to create process pools, cgi style servers, etc.. See the manual for your fastcgi application server for details.

The application is accessible under the URL which you have configured for it in your web server.

Call the functioncreate_request_handler as follows:

let req_hdl = create_request_handler ~reg ~uifile ()

The argument̃ reg registers the dialog classes (like in Wd_run_cgi). The argument˜uifile must be the absolute path
of the UI definition. The suffix of this file must be ".ui" or ".ui.bin".

198



Wd_stdlib

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_stdlib

95 WDialog API for Objective Caml: Wd_stdlib

96 ModuleWd_stdlib : An internal module containing the template stdlib

val stdlib_iso88591_1 : string

The contents of stdlib.xml as Pxp_marshal’ed string (ISO-8859-1)

val stdlib_utf8_1 : string

The contents of stdlib.xml as Pxp_marshal’ed string (UTF8)

199



Wd_template

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_template

97 WDialog API for Objective Caml: Wd_template

98 ModuleWd_template : User access to the template definitions

exception Template_not_found of string

Raised when a template cannot be found. The argument is the name of the missing template

type template

The type of template definitions

type tree

The type of instantiated templates ("XML trees")

Many of the following functions either have anWd_types.application_type[104] object as first argument or a
Wd_types.dialog_type[104] object. These objects contain "background information" that are necessary to do their
job.

Note that the base dialog classWd_dialog.dialog[82] defines a number of private methods that correspond to the fol-
lowing functions, but that know the first argument implicitly. For example, you can call

self#t_to_string tree

instead of

Wd_template.to_string self tree

.

val get : Wd_types.application_type -> string -> template

get app n: looks up the template with namen, or raiseTemplate_not_found.

val apply :
Wd_types.dialog_type ->
template -> (string * tree) list -> tree

apply dlg t params: instantiates the templatet with parametersparams and returns the result. If more
parameters are supplied than actually referenced in the template, these are silently ignored. If parameters are
referenced that are missing inparams, anWd_types.Instantiation_error[104] happens.

val apply_byname :
?localized:bool ->
Wd_types.dialog_type ->
string -> (string * tree) list -> tree

200



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_template

apply_byname dlg n params = apply (get n) params: instantiates the template with namen with
parametersparams and returns the result. Seeapply for the possible exceptions.

˜localized: If true (default), the localized template is returned, if available. Iffalse, exactly the template is
returned that has been requested.

val apply_lazily :
Wd_types.dialog_type ->
string -> (string * tree) list -> tree

apply_lazily dlg n params: creates a tree node which applies the templaten by instantiating the parameters
params. The tree node is simply a "<ui:use template=...>...</ui:use>" node, and it is expanded only when
needed.

val concat : Wd_types.application_type ->
tree -> tree list -> tree

concat app sep l: if l = [n1;n2;...;nN], the concatenationn1 . sep . n2 . sep . . . sep . nN is formed.

val empty : Wd_types.application_type -> tree

A tree node which expands to the empty string.

val text : Wd_types.application_type -> string -> tree

text app s: Forms a tree node which expands to the texts. This means ifs contains meta characters (esp.<, >,
&) these are converted to their corresponding entities (&lt; &gt; &amp; etc)

val html : Wd_types.application_type -> string -> tree

html app s: Forms a tree node which expands exactly tos. This means that ifs contains HTML meta characters
these are left as they are. Because of this it is possible to include HTML elements. The strings is not parsed.

NOTE: It isnot possible to create ui:* elements with this function that will be interpreted. If you want to create
such elements you must instantiate templates containing them.

Internally, this function creates aui:special node.

val to_string : Wd_types.dialog_type -> tree -> string

to_string dlg t: converts the tree representationt to its string representation. You need this function to put a
tree into a string variable. You can then insert this variable into your document by using<ui:dynamic
variable="name-of-variable" special="yes"/>.

For convenience, dialogs have a methodput_tree putting a tree into string variable.

NOTE: The expansion process assumes that the generated HTML code will be inserted into a main page andnot a
popup page.

201



Wd_templrep

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_templrep

99 WDialog API for Objective Caml: Wd_templrep

100 ModuleWd_templrep : Template representation

type ’a Pxp_document.node #Pxp_document.extension as ’a t

The type of prepared templates

type ’a Pxp_document.node #Pxp_document.extension as ’a param = {
param_tree : ’a Pxp_document.node ;

parameter as XML tree

param_text : string Lazy.t ;

parameter as string

}

The type of parameters to instantiate. Inparam_tree, the instantiation text must be passed as XML tree; in
param_text, the same must be passed as string. The first component is used if a parameter is found in element
context; the second component is used if a parameter is found in an attribute value.param_text is a
lazy-evaluated value because it is unlikely that the string transcription is actually used.

type expr =
| Expr_var of string

a variable in an expr

| Expr_strconst of string

a string constant

| Expr_apply of (string * expr list)

a function call

| Expr_param of (string * string list)

a template parameter

Expressions inside $...

val prepare_tree_with_parameters :
mk_uiencode:(unit ->

(’a Pxp_document.node #Pxp_document.extension as ’a)
Pxp_document.node) ->

string ->
Wd_types.application_type -> ’a Pxp_document.node list -> ’a t

202



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_templrep

let pt = prepare_tree_with_parameters ˜mk_uiencode name app nodes:

Prepares the node listnodes for the instantiation of parameters.nodes remains unmodified; but references to inner
nodes ofnodes are stored inpt (this should be transparent).app is the application.name is the name of the
template; it is only used to generate error messages.

The preparation procedure scans all data nodes and all attribute values for ’$’ parameters.pt contains a
restructured copy ofnodes in which the parameters are specially marked up such that the instantiation procedure
can find them quickly.

Recognized forms:

• $name: Replaced by the parametername here

• ${name}: Same

• ${name/enc1/enc2/...}: Apply the encodingsenc1,enc2,. . . in turn before replacing

• $[name]: Replaced by the value of the dialog variablename.

• $[name/enc1/enc2/...]: Apply the encodingsenc1,enc2,. . . in turn before replacing

˜mk_uiencode: This function must return an empty<ui:encode/> node. Such nodes are generated for
${name/enc1/enc2/...} in element context.

val get_parameters :
(’a Pxp_document.node #Pxp_document.extension as ’a) t ->
unit Wd_types.dict

Returns the parameters that have been found in the template as dictionary

val instantiate :
?eval_expr:(expr -> string) ->
(’a Pxp_document.node #Pxp_document.extension as ’a) t ->
’a param Wd_types.dict list -> ’a Pxp_document.node -> unit

instantiate ˜eval_expr pt params container:

Instantiates the already prepared treept, and sets the sub nodes ofcontainer to the new instance (the instance is
a node list). The parameters are searched inparams, strictly from left to right.

An Instantiation_error is raised if something goes wrong.

˜eval_expr: Evaluates an expression found inside brackets$[expr] and returns the result as string. The
expression never containsExpr_param nodes, because these have already been replaced byExpr_strconst
nodes.

203



Wd_transform

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_transform

101 WDialog API for Objective Caml: Wd_transform

102 ModuleWd_transform : This is the processor transforming the ui file to
HTML output.

class syntax_tree : Wd_types.syntax_tree_type

The realization of the syntax tree

val parse_uiapplication :
?charset:Pxp_types.rep_encoding -> string -> Wd_types.application_type

Parses the file whose name is passed to the function, and returns the contents of the ui file as application
declaration.

E.g.parse_uiapplication "index.ui"

˜charset: This argument determines the _internal_ encoding of the characters. The internal encoding may be
different from the encoding found in the parsed files; if necessary, the characters are recoded. This argument
determines also the charset of the returned application, and thus indirectly:

• The charset of dialog variables and other state data

• The charset of the generated HTML pages

val load_uiapplication :
?charset:Pxp_types.rep_encoding -> string -> Wd_types.application_type

Loads the ui definition contained in the binary file, and returns the contents as application declaration.

E.g.load_uiapplication "index.ui.bin"

˜charset: See alsoparse_uiapplication. The charset MUST be the same as the charset used in the compiled
binary. There is no check whether this is actually true.

val compile :
?charset:Pxp_types.rep_encoding -> string -> Pervasives.out_channel -> unit

Compiles the file and writes it to theout_channel. The compiled file can later be loaded by
load_uiapplication which is much faster thanparse_uiapplication.

˜charset: See alsoparse_uiapplication. This charset determines the charset used in the compiled binary. It
must be the same as the charset used toload_uiapplication

204



Wd_types

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

103 WDialog API for Objective Caml: Wd_types

104 ModuleWd_types : This module defines the fundamental types for WDi-
alog

type ’a dict = ’a Wd_dictionary.t

The type’a dict is just an abbreviation for dictionaries (mappings from strings to’a).

type event =
| Button of string
| Image_button of (string * int * int)
| Indexed_button of (string * string)
| Indexed_image_button of (string * string * int * int)
| No_event
| Popup_request of string

Events are generated when the user presses a button, clicks at a hyperlink, or opens a server-generated popup
window.

• Button n: The button with namen has been pressed (<ui:button name="n" ...>)

• Image_button (n,x,y): The image button with namen has been pressed at the coordinates(x,y).
(<ui:imagebutton name="n" ...>)

• Indexed_button (n,i): The button with namen and indexi has been pressed (<ui:button name="n"
index="i" ...>)

• Indexed_image_button (n,i,x,y): The image button with namen and indexi has been pressed at the
coordinates(x,y). (<ui:imagebutton name="n" index="i" ...>)

• No_event: This value indicates that there was no event (or no recognized event)

• Popup_request s: A server popup window has just popped up, and the contents for the window have been
requested. The argument is the second argument of the "open" Javascript function that has been generated by
the ui:server-popup element.

type interactors = {
mutable ui_buttons : string option Wd_interactor.t ;
mutable ui_imagebuttons : string option Wd_interactor.t ;
mutable ui_anchors : string option Wd_interactor.t ;
mutable ui_indexed_buttons : string option Wd_interactor.t ;
mutable ui_indexed_imagebuttons : string option Wd_interactor.t ;
mutable ui_indexed_anchors : string option Wd_interactor.t ;
mutable ui_vars : unit Wd_interactor.t ;
mutable ui_enumvars : (string * string option * string) list ;
mutable ui_uploads : unit Wd_interactor.t ;

}

205



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

Values of this type store the mapping from the (name,index) pairs of interactor elements to the real CGI parameter
names together with auxiliary components.

What’s the problem? Interactor elements likeui:a allow the programmer to identify these either by a single name
(which is an arbitrary string) or by a pair of a "name" and an "index" (i.e. two arbitrary strings). In contrast to this,
CGI parameter names are much more restricted. First, these names are only strings; there is no built-in
representation for pairs of strings. Second, you cannot use arbitrary characters within these names because of
limitations of the transport protocol and because of bugs in browsers. (As the "multipart/form-data" representation
used in the transport protocol bases on the RFC 822 mail format, it is neither possible to pass 8 bit values, nor to
pass control characters. A known bug in Netscape browsers is that the double-quote and backslash characters are
incorrectly represented.)

The solution is to generate the CGI parameter names using only unproblematic characters, and to keep the
mapping of the originalstring or string * string to the generated CGI name. This record stores the
mappings for the various namespaces. The mapping is encapsulated in theWd_interactor[88] module, and the
type’a Wd_interactor.t (where’a is arbitrary) represents such a mapping. The CGI names are simply
enumerated, and theWd_interactor.t value stores only the numbers (IDs) of the CGI parameters. The complete
CGI name is formed using a prefix and the number stored inWd_interactor.t. For example, ui:buttons without
index have the prefix "button_"; and if the ui_button record component contains entries for the IDs 0, 1, and 2, the
complete CGI names are "button_0", "button_1", and "button_2", respectively.

The type parameter’a of ’a Wd_interactor.t is the type of the auxiliary component stored with every entry.
See below for the meanings in every case.

TheWd_interactor.t structure always maps from pairsstring * string to numeric IDs. Because of this,
there are usually two mappings, one for the (name,index) pairs, and one for the simple names. The record
components listed below that have a name with "indexed" are responsible for the pairs, the corresponding
component without "indexed" stores the mapping for the simple case.

The simple case is represented asWd_interactor.t by using always the empty string"" as index.

THE COMPONENTS ARE:

1. BUTTON-TYPE INTERACTORS:

• ui_buttons: Enumerates theui:button interactors that have only a name, not an index. CGI prefix:
"button_".

• ui_indexed_buttons: Enumerates theui:button interactors that have both a name and an index. CGI
prefix: "xbutton_".

• ui_imagebuttons: Enumerates theui:imagebutton interactors that have only a name, not an index.
CGI prefix: "imagebutton_".

• ui_indexed_imagebuttons: Enumerates theui:imagebutton interactors that have both a name and
an index. CGI prefix: "ximagebutton_".

• ui_anchors: Enumerates theui:a interactors that have only a name, not an index. CGI prefix:
"anchor_".

• ui_indexed_anchors: Enumerates theui:a interactors that have both a name and an index. CGI
prefix: "xanchor_".

These components use the auxiliary component to store the "goto" attribute of the interactor, if present.

2. BOX-LIKE INTERACTORS:

• ui_vars: Enumerates the interactors that are bound to an object variable (i.e. they have avariable
attribute, likeui:text). As variables allow either only non-indexed names or only indexed names, this
component contains both interactors identified by a simple string name and interactors identified by
(name,index) pairs; it is not possible that there are conflicts between the two naming methods. CGI
prefix: "var_". This component does not have an auxiliary component.

• ui_enumvars: This list enumerates the simple names(name, None, pg) or pairs(name, Some
index, pg) that occur in checkbox, radiobutton and select list interactors.pg is the name of the page
where the interactor occurs (knowing the page is necessary for popup dialogues).

206



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

• ui_uploads: Enumerates theui:file interactors. These may only have a simple name. CGI prefix:
"upload_". This component does not have an auxiliary component.

type ’a poly_var_value =
| String_value of string
| Enum_value of string list
| Dialog_value of ’a option
| Dyn_enum_value of (string * string) list
| Alist_value of (string * ’a poly_var_value) list

poly_var_value is the type of instance variables of dialogs. There are six possibilities forpoly_var_values:

• String_value s: The instance variable contains the strings

• Enum_value [x1;x2;...]: The instance variable contains an enumerator value with the internal itemsx1,
x2, etc. (As variables are declared it is known which items are possible, and whether there are corresponding
external values.)

• Dialog_value None: The instance variable does not contain a dialog.

• Dialog_value (Some dlg): The variable contains the dialog dlg.

• Dyn_enum_value [(x1,y1);(x2,y2);...]: The variable contains the enumerator with internal itemsx1,
x2,. . . and the corresponding external valuesy1, y2, . . .

• Alist_value [(i1,v1); (i2,v2); ...]: The variable contains the associative list where the indexi1 is
mapped to the valuev1, i2 is mapped tov2 etc.

See alsoWd_types.var_value[104] below.

type enum_decl = {
enum_name : string ;
mutable enum_definition : (string * string) list ;

}

The type of an enumeration declaration (i.e.ui:enumeration). The componentenum_name is the name of the
enumeration. The componentenum_definition is the list of the pairs of internal and external names, in the right
order.

type var_type_name =
| String_type
| Enum_type of enum_decl
| Dialog_type
| Dyn_enum_type

The different variable types

type ’a poly_var_decl = {
var_name : string ;
var_type : var_type_name ;
var_default : ’a poly_var_value option ;
var_temporary : bool ;
var_associative : bool ;
var_protected : bool ;

}

This record describes variable declarations.var_name contains the name of the variable.var_type is the declared
type according to thetype attribute.var_default contains eitherNone, in which case no special initial value is
declared, orSome v, wherev is the initial value.var_temporary corresponds to thetemporary attribute,
var_associative to theassociative attribute, and finallyvar_protected to theprotected attribute.

207



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

type response_header = {
mutable rh_status : Netcgi_types.status ;
mutable rh_content_type : string ;
mutable rh_cache : Netcgi_types.cache_control ;
mutable rh_filename : string option ;
mutable rh_language : string option ;
mutable rh_script_type : string option ;
mutable rh_style_type : string option ;
mutable rh_set_cookie : Netcgi_types.cgi_cookie list ;
mutable rh_fields : (string * string list) list ;

}

This record contains the CGI header of the response. It is initialized quite early and can be modified while
executing the request. The fields correspond to the arguments of the methodset_header of the class type
cgi_activation, defined inNetcgi_types.

type debug_mode_style = [ ‘Fully_encoded | ‘Partially_encoded ]

Whether the generated HTML comments do escape HTML meta characters always (‘Fully_encoded), or only
partially (‘Partially_encoded).

type environment = {
debug_mode : bool ;
debug_mode_style : debug_mode_style ;
prototype_mode : bool ;
server_popup_mode : bool ;
self_url : string ;
response_header : response_header ;
cgi : Netcgi_types.cgi_activation ;

}

This record contains data that may be different for every CGI request. Thedebug_mode andprototype_mode
components are true iff the corresponding mode is switched on. Theserver_popup_mode is true iff the current
request is a popup request.self_url is the URL that invokes the CGI recursively.cgi contains the full CGI
request. Therequest_header is the designated header of the HTTP response.

type trans_vars = {
mutable within_popup : bool ;
mutable current_page : string ;
mutable popup_env_initialized : bool ;
mutable condition_code : bool ;
mutable serialize_session : unit -> string ;

}

This record is private for the transformation engine.

type (’a, ’b, ’c) poly_ds_buf = (’a, ’b, ’c) Wd_serialize_types.poly_ds_buf = {
ds_str : string ;
mutable ds_pos : int ;
ds_end : int ;
ds_universe : ’a ;
ds_environment : ’c ;
ds_dialogs : (int, ’b) Hashtbl.t ;

}

The deserialization buffer

208



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

class type dialog_decl_type =

object

method name : string

The name of the dialog

method enumeration : string -> Wd_types.enum_decl

Returns the declared enumeration

method variable_names : string list

Returns the names of all declared variables

method variable : string -> Wd_types.dialog_type Wd_types.poly_var_decl

Returns a single variable declaration

method page_names : string list

Returns the names of all declared pages

method page : string -> Wd_types.syntax_tree_type

Returns the XML tree of the demanded page (i.e. theui:page node)

method page_is_declared_as_popup : string -> bool

Returns whether the page is declared as popup page (attributepopup

method start_page : string

Returns the name of the start page

method default_context : Wd_types.syntax_tree_type Wd_types.dict

Returns the default context of the dialog, i.e. the context parameters that are declared by theui:context
element occurring directly in theui:dialog element, and not in a certain page.

method language_variable : string option

ReturnsSome v if a language variable calledv is declared, orNone if no such variable exists.

end

This class type contains the dialog declaration

class type virtual dialog_type =

object

method copy : Wd_types.dialog_type

return a copy of the dialog

The copy is not attached to a session, even if the original object is.

method name : string

return the name of the dialog

209



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

method page_name : string

return the name of the current page

method page_names : string list

returns the names of all defined pages of this dialog

method variable : string -> Wd_types.dialog_type Wd_types.poly_var_value

variable n: Get the variable with namen, or raiseNo_such_variable. The namen cannot only refer to
variables declared in this dialog, but also to variables of subdialogs using the dot notation:
"name1.name2. . .nameN". Here,name1 must be a dialog variable, andname2 a variable of this subdialog,
and so on, until the final variablenameN is reached, whose value is returned. - The dot notation is accepted by
the following methods, too.

method variable_decl : string -> Wd_types.dialog_type Wd_types.poly_var_decl

method string_variable : string -> string

string_variable n: Get the contents of the string variablen. RaiseNo_such_variable if the variable
does not exist.Runtime_error if the variable is not a string.

method enum_variable : string -> string list

enum_variable n: Get the contents of the enumerator variablen. The enumerator must have been declared.
The returned list contains only the internal values. RaiseNo_such_variable if the variable does not exist.
Runtime_error if the variable is not a declared enumerator.

method dyn_enum_variable : string -> (string * string) list

dyn_enum_variable n: Get the contents of the enumerator variablen. The enumerator may be dynamic or
may be declared. The returned list contains both the internal and the external values. Raise
No_such_variable if the variable does not exist.Runtime_error if the variable is not an enumerator.

method dialog_variable : string -> Wd_types.dialog_type option

dialog_variable n: Get the contents of the dialog variablen. RaiseNo_such_variable if the variable
does not exist.Runtime_error if the variable is not a dialog.

method alist_variable :
string -> (string * Wd_types.dialog_type Wd_types.poly_var_value) list

alist_variable n: Get the contents of the associative variablen. RaiseNo_such_variable if the variable
does not exist.Runtime_error if the variable is not an alist.

method lookup_string_variable : string -> string -> string

method lookup_enum_variable : string -> string -> string list

method lookup_dyn_enum_variable : string -> string -> (string * string) list

method lookup_dialog_variable :
string -> string -> Wd_types.dialog_type option

lookup_*_variable n x: Get the contents of the associative variablen at indexx. No_such_variable if
the variable does not exist.Not_found if the variable is undefined atx. Runtime_error if the variable has
the wrong type.

method set_variable :
string -> Wd_types.dialog_type Wd_types.poly_var_value -> unit

210



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

set_variable n v: Sets the variablen to the valuev. The valuev must be compatible to the declared type
of the variable.No_such_variable if the variable does not exist.Runtime_error if the variable is not
compatible.

method unset_variable : string -> unit

unset_variable n: Sets the variablen to the declared default value. If the default is not declared, the
following default values apply: For strings: the default is the empty string. For enumerators: the default is
the empty list. For dialogs: the default is that the value does not exist.

method lookup_uploaded_file : string -> Netcgi_types.cgi_argument option

lookup_uploaded_file name: Checks whether the file upload boxname was used. If so,Some arg, where
arg is the transporting CGI argument is returned. If the box was not used, but the box exists,None is
returned. Raises aRuntime_error if the named box does not exist.
Important note: Uploaded files are not persistent. This means that they are only existent in thehandle
phase, not during initialization nor theprepare_page phase. You get a failure "Upload.get: not initialized"
if you try to access uploaded files in the wrong moment.

method dump : Format.formatter -> unit

dump f output a textual description of the current state into formatterf. (A debugging aid.)

method next_page : string

Returns the name of the designated next page.

method set_next_page : string -> unit

Sets the name of the designated next page

method event : Wd_types.event

returns the event that just has happened

method is_server_popup_request : bool

Returns whether someone invokedset_server_popup_request before. This is usually done if an dialog is
restored for a server-driven popup window (tagui:server-popup).

method serialize : (Wd_types.dialog_type, unit) Hashtbl.t -> Buffer.t -> unit

Writes the state of this dialog into the buffer. The hashtable is used in the recursive descent into the object
hierarchy to remember which dialogs have already been serialized. Call the method initially with an empty
hash table.

method unserialize :
(Wd_types.universe_type, Wd_types.dialog_type, Wd_types.environment)
Wd_types.poly_ds_buf -> unit

Sets the state of this dialog from the deserialization buffer which must contain previously serialized dialog.

method enter_session_scope : Wd_types.session_type -> unit

Tells the dialog the current session

method leave_session_scope : unit -> unit

Tells the dialog that it is no longer under control of this session

method session : Wd_types.session_type

211



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

Returns the current session. Fails when there is no session

method environment : Wd_types.environment

Return the environment of the current CGI activation

method declaration : Wd_types.dialog_decl_type

Return the declaration of this dialog

method application : Wd_types.application_type

Return the application

method universe : Wd_types.universe_type

Return the universe

104.0.2 The following methods must be defined in subclasses:

method virtual prepare_page : unit -> unit

This method is invoked just before a new output page is generated.

Preconditions:
The methodpage_name returns the name of this page. The methodevent still returns the action last
happened, but the name of the page where this action happened is lost. It may be interesting whether the last
event wasNo_event because this indicates that the page is the initial page of the dialog.

This method should set any variables which are necessary to generate the new page (mostly variable
containing HTML fragments). Furthermore, any state that needs to be saved should be put into variables, too.

method virtual handle : unit -> unit

This method is invoked just after the user triggered an event (e.g. pressed a button).

Preconditions: The methodpage_name returns the name of the page that was visible while the event was
triggered. The methodevent returns the description of the event.

Postconditions:The method may set the next page to display by invokingset_next_page; if it does not
then the default will be used. The default is either specified by the XML element describing the interactor
that triggered the event, or the default is otherwise this page again.

This method should modify the variables according to the event that happened, and optionally set the next
page to display.

There is also an alternate way to go to another page: raising the exception Change_page.

By raising the exception Change_dialog this method may force to go to another dialog.

end

This class contains the dialog instance

class type application_type =

object

method start_dialog_name : string

Returns the name of the start dialog

method dialog_names : string list

212



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

Returns the names of the declared dialogs

method dialog_declaration : string -> Wd_types.dialog_decl_type

Returns the declaration for the passed dialog

method template_names : string list

Returns the names of the declared templates (including the templates of the core and the standard libraries)

method template : string -> Wd_types.template_type

Returns the definition of the passed template

method study : unit -> unit

Studies all defined templates

method output_encoding : string -> string -> string

Returns the output encoding as functionstring -> string

method add_output_encoding : string -> (string -> string) -> unit

Adds the output encoding function (second argument) under the passed name (first argument) to the
application. It is not possible to redefine existing functions.

method var_function :
string ->
Wd_types.dialog_type ->
Wd_types.dialog_type Wd_types.poly_var_value list ->
Wd_types.dialog_type Wd_types.poly_var_value

Returns the variable function as O’Caml function. If the function has lazy arguments, this property will be
lost when it is returned by this method. Uselazy_var_function instead.

method lazy_var_function :
string ->
Wd_types.dialog_type ->
Wd_types.dialog_type Wd_types.poly_var_value Lazy.t list ->
Wd_types.dialog_type Wd_types.poly_var_value

Returns the variable function as O’Caml function

method dtd : Pxp_dtd.dtd

Returns the DTD of WDialog

method charset : Pxp_types.rep_encoding

Returns the character set used for the internal representation, and for the generated HTML pages.

method debug_mode : bool

Returns whether there is a processing instruction<?wd-debug-mode?>. This value is used to initialize the
environment.

method debug_mode_style : Wd_types.debug_mode_style

Returns the style of the debug mode

method prototype_mode : bool

213



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

Returns whether there is a processing instruction<?wd-prototype-mode?>. This value is used to initialize
the environment.

method onstartup_call_handle : bool

Returns whether there is a processing instruction<?wd-onstartup-call-handle?>.

method add_var_function :
string ->
(Wd_types.dialog_type ->
Wd_types.dialog_type Wd_types.poly_var_value list ->
Wd_types.dialog_type Wd_types.poly_var_value) ->
unit

Adds a variable function with eager evaluation

method add_lazy_var_function :
string ->
(Wd_types.dialog_type ->
Wd_types.dialog_type Wd_types.poly_var_value Lazy.t list ->
Wd_types.dialog_type Wd_types.poly_var_value) ->
unit

Adds a variable function with lazy evaluation of its arguments

end

This class represents the whole application

class type template_type =

object

method study : Wd_types.application_type -> unit

Studies the template for the scope of the passed application

method instantiate :
?context:Wd_types.syntax_tree_type Wd_types.dict ->
?vars:Wd_types.trans_vars ->
?params:Wd_types.syntax_tree_type Wd_types.dict ->
Wd_types.dialog_type -> Wd_types.syntax_tree_type

Instantiates the template. The parameter˜context may contain the context parameters (defaults to the empty
set).˜vars may contain the transformation variables (defaults to: not available).˜params may contains the
lexical parameters (defaults to the empty set). In every case, the current dialog instance must be passed.
The result of the instantiation is the XML tree where all dollar notations have been replaced by the passed
actual parameter values. It is not necessary that the template is completely expanded, however, i.e. it may
containui:use elements.
The exceptionInstantiation_error will be raised if something goes wrong.

end

This class represents a template definition

class type syntax_tree_type =

object

214



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

inherit Pxp_document.extension

The syntax tree is an extension of the PXP model for XML trees

inherit Wd_types.template_type [104]

The syntax tree is always a template definition. This has formal reasons.

method scan_application : Wd_types.application_type -> unit

Scanner methods
The side-effect of the scanners is to put the result into the passed argument.

method scan_dialog :
Wd_types.application_type -> Wd_types.dialog_decl_type -> unit

method scan_enumeration : Wd_types.enum_decl -> unit

method scan_literal : unit -> Wd_types.dialog_type Wd_types.poly_var_value

(But this one is functional)

method escaped_data : string

Returns the string contained in the data node after HTML-escaping has been applied. This string is cached.

method to_html :
?context:Wd_types.syntax_tree_type Wd_types.dict ->
?vars:Wd_types.trans_vars ->
Wd_types.dialog_type -> Netchannels.out_obj_channel -> unit

This method writes the current node and all its children to the passed output channel. This method is for
HTML context, i.e. character data are to be HTML-escaped, and all elements have to be interpreted.

method to_text :
?context:Wd_types.syntax_tree_type Wd_types.dict ->
?vars:Wd_types.trans_vars ->
Wd_types.dialog_type -> Netchannels.out_obj_channel -> unit

This method writes the current node and all its children to the passed output channel. This method is for
attribute context, i.e. character data remain as they are without escaping them, and only the elements are
interpreted that are defined for attribute context.

end

This class represents the XML syntax tree

class type universe_type =

object

method application : Wd_types.application_type

Return the application this universe is made for

method register :
string ->
(Wd_types.universe_type ->
string -> Wd_types.environment -> Wd_types.dialog_type) ->
unit

215



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

Registers that a certain O’Caml class implements the callbacks of the dialog declared in the UI definition.
More precisely,

u # register name f_new

registers that the dialogname is realized by the objects returned by the evaluation of the constructing function
f_new. The arguments passed tof_new are:

f_new u name env

whereu andname are the universe and the dialog name, andenv is the environment of the current CGI
activation. It is legal to storeenv in the created objects because they are created for every activation anew.

method create : Wd_types.environment -> string -> Wd_types.dialog_type

Creates a new object for the passed environment and dialog name. This method effectively calls the function
f_new that has previously been registered.

end

The universe is the registry of classes and dialogs

class type session_manager_type =

object

method create : Wd_types.dialog_type -> Wd_types.session_type

Creates a new session for this dialog

method unserialize :
Wd_types.universe_type ->
Wd_types.environment -> string -> Wd_types.session_type

Restores an old session for the passed universe and the passed environment. The string is the session in
serialized form as returned by theserialize method.

end

The session manager creates new sessions, and looks sessions up in the (possibly fictive) session database

class type session_type =

object

method session_id : string

Returns the ID of the session. Fails if the session does not have an ID (e.g. it is not stored in the database)

method dialog_name : string

Returns the name of the dialog this session encapsulates

method dialog : Wd_types.dialog_type

Returns the dialog

method commit_changes : unit -> unit

Causes thatserialize returns the current state of the dialog. This means thatcommit_changes extracts the
state from the dialog, and prepares the string that will be returned byserialize.

216



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_types

method serialize : string

Returns the state of the dialog at the time of the lastcommit_change or the state of the initial dialog

method change_dialog : Wd_types.dialog_type -> unit

Continue with a new dialog. The methodsdialog_name anddialog will immediately reflect the change.
However, you have to callcommit_changes to makeserialize return the state of the new dialog.

end

This is a single session

type var_value = dialog_type poly_var_value

This type is the concrete version ofWd_types.poly_var_value[104] that is actually used

type var_decl = dialog_type poly_var_decl

This type is the concrete version ofWd_types.poly_var_decl[104] that is actually used

type ds_buf = (universe_type, dialog_type, environment)
poly_ds_buf

This type is the concrete version ofWd_serialize.poly_ds_buf that is actually used

exception Change_dialog of dialog_type

The implementation of thehandle method of a dialog may raiseChange_dialog to drop the current dialog and
continue with another dialog.

exception Change_page of string

The implementation of thehandle method of a dialog may raiseChange_page to set the next page to display for
the current dialog.

exception Formal_user_error of string

A formal error that happens independently of the current runtime state. The string argument explains the error.

exception Runtime_error of string

A certain operation cannot be performed because the current state does not fulfill the necessary preconditions. The
string argument explains the error.

exception No_such_variable of string

It has been tried to access a non-declared variable. The string is the name of the variable.

exception Instantiation_error of string

An error generated by theinstantiate method. The caller should catch this exception and report the error from
its own view

217



Wd_serialize_types

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_serialize_types

105 WDialog API for Objective Caml: Wd_serialize_types

106 ModuleWd_serialize_types

type (’a, ’b, ’c) poly_ds_buf = {
ds_str : string ;
mutable ds_pos : int ;
ds_end : int ;
ds_universe : ’a ;
ds_environment : ’c ;
ds_dialogs : (int, ’b) Hashtbl.t ;

}

218



Wd_universe

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_universe

107 WDialog API for Objective Caml: Wd_universe

108 Module Wd_universe : Contains the implementation of
Wd_types.universe_type[104]

class universe : Wd_types.application_type -> Wd_types.universe_type

Implements the universe. A universe is always bound to a certain application, so you must pass this application on
creation

219



Wd_upload

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_upload

109 WDialog API for Objective Caml: Wd_upload

110 ModuleWd_upload : This module manages file upload parameters.

type upload_manager

Manages the file upload parameters of a certain request

val get : upload_manager -> string -> Netcgi_types.cgi_argument

Returns the CGI argument containing the file upload information for the file upload box with the passed name.
This name is what is specified in the "name" attribute of ui:file.

See netcgi.mli for accessor functions forcgi_argument values.

This function raisesNot_found if there is no ui:file box with the passed name. This function returns a pseudo
argument with empty value, empty filename, and empty MIME type if the browser did not send the corresponding
CGI argument to the server. (Note: At least Netscape browsers always send CGI arguments even if the user did not
specify files to upload, and these arguments have empty value, empty filename, and empty MIME type. It is a
good idea to check for an empty filename in order to find out whether the upload box was used or not.)

val init : Wd_types.environment -> Wd_types.interactors -> upload_manager

Scans the available CGI parameters for file uploads, and initializes this module.

• It is required that the CGI module is already initialized (inenvironment)

• The argument of this function is the interactor definition of the page that has been submitted.

220



Wd_var_functions

Web Path: WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

111 WDialog API for Objective Caml: Wd_var_functions

112 Module Wd_var_functions : This module defines the "variable func-
tions" that can be called in $[...] expressions.

All these functions take formally a list ofvar_value arguments and return avar_value. Actually, they are often only
defined for a certain number of arguments, and for arguments of certain type.

The functions raise aFailure exception if something is wrong.

val id :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the first argument

val length :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the length of the single string argument in characters.

val card :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the cardinality of the single argument. The cardinality are the number of iterations<ui:iterate> or
<ui:enumerate> would do for a variable with the given value:

• For a string: the number of words of the string

• For an enumerator: the number of elements

• For an association: the number of elements

val size :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the size of the single argument, which may be aString_value, Enum_value, Dyn_enum_value, or an
Alist_value. The returned size is encoded asString_value.

size is deprecated! Use eitherlength or card instead!

val add :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Adds the numbers encoded asString_value, and returns the sum asString_value.

val sub :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

221



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

Subtracts the following numbers from the first number. All numbers must be encoded asString_value. Returns
the result asString_value.

val mul :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Multiplies the numbers encoded asString_value, and returns the product asString_value.

val div :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Divides the first number through the following numbers. All numbers must be encoded asString_value. Returns
the result asString_value.

val modulo :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

The first number module the second number. Both numbers must be encoded asString_value. Returns the result
asString_value.

val assoc :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Looks the second argument up in the first argument, which must be anAlist_value. The index, i.e. second
argument, must be anString_value.

val nth :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the nth element of the first argument which must be anAlist_value. The second argument is the
position, a number encoded asString_value.

val contains :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns 1 if the first argument contains the second argument, and 0 otherwise. The second argument must be a
string value. The function is defined as follows:

• If the first argument is a string, it is split up into a list of words, and it is tested whether the second string
occurs in the list of words.

• If the first argument is a declared enumerator, it is tested whether the value includes the string as item.

• If the first argument is a dynamic enumerator, it is tested whether the value includes the string as internal
item.

• If the first argument is an associative list, it is tested whether the value includes the string as index.

val mentions :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns 1 if the first argument contains the second argument, and 0 otherwise. The second argument must be a
string value. The function is defined as follows:

• If the first argument is a dynamic enumerator, it is tested whether the value includes the string as external
item.

• If the first argument is an associative list, it is tested whether the value includes the string as mapped value.

val translate :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

222



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

Like ui:translate maps internal values of enumerators to external values. The function takes two arguments:

• translate [dyn; int]: The first argument is a dynamic enumerator, and the second argument is the
internal value to translate to the external value

• translate [type; int]: The first argument denotes a declared enumerator (as a string), and the second
argument is the internal value to translate to the external value

val rev_translate :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Maps external values to internal values:

• rev_translate [dyn; int]: The first argument is a dynamic enumerator, and the second argument is the
external value to translate to the internal value

• translate [type; int]: The first argument denotes a declared enumerator (as a string), and the second
argument is the external value to translate to the internal value

val eq :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Compares two strings, and returns 1 when equal and 0 when not equal

val ne :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Compares two strings, and returns 0 when equal and 1 when not equal

val match_ :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Checks whether the first string matches the regular expression in the second string, and returns 1 on match and 0
otherwise

val nomatch :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Checks whether the first string matches the regular expression in the second string, and returns 0 on match and 1
otherwise

val substring :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns a substring of the first argument, aString_value. The following forms are accepted:

• substring [s; pos; length]: The second argument is the position, and the third argument is the length.
The length can be negative.

• substring [s; pos]: Only the position is passed. Returns the substring beginning at this position until the
end of the string.

If the start position or end position of the substring is outside the possible range, only the part of the substring is
returned that is inside the possible range.

val concat :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Concatenates all theString_value arguments, and returns the result asString_value.

223



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

val int_eq :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_ne :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_lt :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_le :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_gt :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_ge :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

These functions compare two strings as integers, and return 1 if the condition is fulfilled, and 0 if not. The
conditions are:

• int_eq: The integers are equal

• int_ne: The integers are not equal

• int_lt: The first integer is less than the second integer

• int_le: The first integer is less or equal than the second integer

• int_gt: The first integer is greater than the second integer

• int_ge: The first integer is greater or equal than the second integer

val int_min :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_max :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

These functions compute the minimum/maximum of all integer arguments

val int_abs :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val int_sign :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

These functions compute the absolute value/the sign of the first integer argument

val card_eq :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val card_ne :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val card_lt :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val card_le :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val card_gt :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

val card_ge :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

These functions compare the cardinality of the first argument with a string taken as integer, and return 1 if the
condition is fulfilled, and 0 if not. The cardinality is defined as for thecard function. The conditions are:

224



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

• int_eq: The cardinality is equal to the integer

• int_ne: The cardinality is not equal to the integer

• int_lt: The cardinality is less than the integer

• int_le: The cardinality is less or equal than the integer

• int_gt: The cardinality is greater than the integer

• int_ge: The cardinality is greater or equal than the integer

val height :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the height of theString_value argument. The height is the number of lines, i.e. the number of
LF/CR/CRLF occurrences plus 1.

val width :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the width of theString_value argument. The width is the length of the longest line (not counting the
line separators).

val dialog_exists :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

When called with only one argument: The function returns 1 if the argument is an existing dialog (i.e.
Dialog_value(Some _)) and 0 if the dialog does not exist (i.e.Dialog_value None).

When called with two arguments (legacy mode): The first argument must be a dialog value as before, and the
second argument must be either the string "yes" or the string "no". The function returns 1 if the existence of the
dialog is equivalent to the boolean value of the string.

val and_ :
Wd_types.dialog_type -> Wd_types.var_value Lazy.t list -> Wd_types.var_value

Calculates the logical AND operation for all its arguments: Returns 1 if all arguments are non-zero integers, and 0
otherwise.

val or_ :
Wd_types.dialog_type -> Wd_types.var_value Lazy.t list -> Wd_types.var_value

Calculates the logical OR operation for all its arguments: Returns 1 if there is a non-zero integer as argument, and
0 otherwise.

val not_ :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Calculates the logical NOT operation of its single argument: Returns 1 if the argument is 0, and 0 if the argument
is non-zero.

val true_ :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the constant 1

val false_ :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the constant 0

225



WDialog Manual WDialog / Reference / WDialog API (O’Caml) / Modules / Wd_var_functions

val if_ :
Wd_types.dialog_type -> Wd_types.var_value Lazy.t list -> Wd_types.var_value

Evaluates the first argument (which must be an integer). If the integer is non-zero, the result is the second
argument. If the integer is 0, the result is the third argument.

val var :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the contents of the variable whose name is passed as first argument, aString_value.

val dialog :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the name of the current dialog (no arguments)

val self :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the current dialog (no arguments)

val page :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the name of the current page (no arguments)

val language :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the current language, or "" if none selected (no arguments)

val self_base_url :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the URL pointing to the current script without session state

val session_id :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Returns the session ID without checksum

val create_anchor_event :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Add an anchor event and return the identifier

val create_xanchor_event :
Wd_types.dialog_type -> Wd_types.var_value list -> Wd_types.var_value

Add an indexed anchor event and return the identifier

226



Runtime models

Web Path: WDialog / Reference / Runtime models

113 Runtime models

There are currently three ways of connecting a WDialog application to the outer world, especially to the Web: CGI,
FastCGI, and JSERV. Note that the Perl bindings currently only support CGI.

Besides choosing from three acronyms, the runtime model determines how the resources of the operating system can be
used. The question is whether two activations of the application run in the same process, or run in different processes, and
how parallel accesses to the same runtime entities are resolved. Although we are focusing on the connection to the web
(server), the runtime model also determines possible solutions to other connections, for example to database systems.

113.1 CGI

The CGI interface is well-known and available for almost all web servers. Furthermore, CGI defines a set of possible
interactions between the web server and the application, and serves as a reference for what one can expect. Because of
these reasons, CGI is the basic interface for WDialog.

CGI starts a new process for every request. This has the advantage that (1) the requests can be processed separately
such that they do not interfer with each other, and that (2) it is ensured that the application gives all allocated resources
(open files etc) back to the operating system. These two points are the reasons why CGI is still used today for critical
applications, although there is a performance bottleneck as every process must be initialized anew.

There are some wrong legends about CGI. For example, some people think that the fact that CGI uses thefork andexec
system calls makes it slow from the very beginning, especially when the binary to start has a size of several megabytes.
This is not the problem. Modern Unix-based operating system are heavily optimized regardingfork andexec, and an
experiment showed that my old 400 Mhz system can start 30 CGI processes per second without causing high CPU load;
the process image was bigger than one megabyte. Actually, the problem with CGI is that loading the process image is
not all of the initialization work. WDialog must parse the XML file containing the UI definition, and it must prepare the
XML tree for the transformation. These actions may take more than a second for big applications.

Nevertheless, there is a way to reduce the initialization time significantly, and this makes CGI interesting again. The idea
is to avoid parsing the XML file by loading preformatted binary data instead. You can create the binary representation by
calling the programwd-xmlcompile which is part of the WDialog distribution:

wd-xmlcompile sample.ui

- this would createsample.ui.bin, and the loader of WDialog automatically finds this file and loads it instead of
sample.ui. This trick often reduces the load time to less than 0.5 seconds.

In order to run the application as CGI, call the functionWd_run_cgi.run from your main program - it does all the rest.

113.2 FastCGI

The FastCGI protocol is an extension of the CGI model which allows multiple requests to be processed by the same
process. The CGI application either runs in an application server environment provided by the web server (the most

227



WDialog Manual WDialog / Reference / Runtime models

common method) or as a stand alone daemon listening for FastCGI connection. The details of the fastcgi protocol,
including instructions on how to set it up for various web servers can be found atThe FastCGI Project9 web page.

Using fastcgi in WDialog is accomplished by calling the functionWd_run_fastcgi.serv. This function implements a
run loop which processes connections sequentially.

113.2.1 Concurrency

Many different forms of concurrency are possible with fastcgi, and in most cases very little needs to be done to make the
WDialog application aware of it. This is especially true in the web server managed environment, where the web server
generally implements a process pool model in which it runs N copies of the application at startup time. Requests are then
routed to each process by the web server in an implementation dependant way. As long as session state is in some sort
of shared store the application need not even be aware that it is operating in a concurrent environment. Threads are also
possible in two cases. You may either start multiple threads, and have each one callWd_run_fastcgi.serv, or you may
use threads to perform background tasks which do NOT talk on the fastcgi output channels. No multiplexing of output
is possible over a single connection to the web server. The first thread model is very similar to the process pool model,
except that a shared session manager need not be used. For an external application, one which does not use the web server
as a process manager, concurrency is left completely up to the application.

113.3 JSERV

The JSERV protocol was developed by theJava Apache Project10, and is still be used byJakarta11. Although these
projects base on the Java language, the protocol as such is language-independent, and it turns out that it is very simple to
connect a JSERV-enabled web server with a servlet engine that is not written in Java.

The Java Apache Project is dead, no further development takes place, as all subprojects have moved to Jakarta. Nev-
ertheless, I currently recommend to use mod_jserv, the JSERV extension for Apache 1.3 from the Java Apache Project,
because it is much simpler to extract it from the whole software project. However, mod_jk works, too.

The architecture behind JSERV is quite simple. The web server is extended with the JSERV protocol, and every request
opens a new connection to the servlet process. This process is a permanently running daemon. The web server forwards
the page request over this connection to the servlet process, and the latter processes it and sends the answer back to the
web server. Effectively, the servlet process behaves like a second web server behind the first, but it does not support the
full HTTP protocol but the simpler and less general JSERV protocol.

In the original Java environment, the servlet process is a JVM (Java virtual machine), and it executes the code of the
application. There is also a part handling the JSERV protocol, but this is simply a library that can be loaded like any other
library. - The Java background explains why the servlet process is permanently running: CGI is not a choice for Java,
because of the long startup time of the JVM. Furthermore, Java’s excellent multi-threading capabilities makes it possible
to handle concurrency inside the JVM.

That the servlet process is permanently running is the important advantage for the O’Caml port, too. The servlet process
is simply an O’Caml program that uses the library for JSERV (which is included in theOcamlnet12 package). However,
there are differences to the Java original:

• The servlets are not dynamically loaded. A normal, pre-linked program is used. This means that you must shutdown
the servlet process before you can exchange a servlet by a newer version, or add a servlet.

• Instead of multi-threading, a range of execution models is supported. One reason is that multi-threading is not
always adequate, another reason is that the multi-threading support in O’Caml is not as good as in Java. The models
are:

9(URL: http://www.fastcgi.com)
10(URL: http://java.apache.org/)
11(URL: http://jakarta.apache.org/)
12(URL: link-ocamlnet;)

228



WDialog Manual WDialog / Reference / Runtime models

– ‘Sequential: Serial execution in a single process

– ‘Forking: Every request spawns a new process

– ‘Process_pool: Requests are forwarded to a process pool

– ‘Thread_pool: Requests are processed by a thread pool

The latter model is not yet implemented!

The various models are discussed in detail below.

WDialog provides the moduleWd_run_jserv that defines request handlers for the various execution models. A sample
main program for a servlet process would be:

let req_hdl = Wd_run_jserv.create_request_handler ... () in
let server = ‘Forking(20, [ "appname", req_hdl ]) in
Netcgi_jserv.jvm_emu_main

(Netcgi_jserv_app.run server ‘Ajp_1_2)]

The real main program isNetcgi_jserv.jvm_emu_main which accepts command-line arguments that are compatible
(enough) with the arguments of the Java JVM. (Useful, because the JSERV web server extension usually starts the servlet
process, and the web server assumes that it starts a JVM.)

The functionNetcgi_jserv_app.run is the main entry point for the JSERV protocol handler. It gets as argument the
server definition, here of‘Forking type. The list defines that the servletappname is handled byreq_hdl, the WDialog-
specific request handler.

In order to get the servlet server running, you also need thejserv.properties file containing the configurations that are
needed by both the web server and the servlet server. Furthermore,httpd.conf, the configuration file of Apache, must
be extended with somemod_jserv-specific definitions. You can find more information in the Java Apache distribution.

113.3.1 The JSERV execution model ‘Sequential

Sequential execution means that a single process gets all arriving requests which are processed one after another. This
works very well unless it takes too long to process a request. The big advantage of this execution model is that there is
almost no management overhead to handle concurrent accesses, because these do not happen. However, if the computa-
tions for a request last very long, the server will block until this time-consuming request is done, and any other requests
happening at the same time must wait.

There is another advantage: It is quite simple to cache frequently accessed data, because these can be stored in global
variables, again without any additional overhead.

The sequential model is very attractive for web applications that have a limited number of concurrent users, and that run
on single-CPU systems. However, some care must be taken to avoid that individual requests block the whole application.
For example, one possibility would be to set the alarm clock (Unix.alarm or Unix.setitimer) and to raise an exception
after the maximum period of time has expired.

113.3.2 The JSERV execution model ‘Forking

In this model, every incoming request causes that the main process spawns a subprocess. The subprocess performs all
computations that are necessary to reply, while the main process continues immediately accepting new connections.

This model sounds like CGI, but it is actually different in one important aspect. When the subprocess is spawned, all
necessary initializations have already happened, and the subprocess can immediately begin to analyze the request, and to

229



WDialog Manual WDialog / Reference / Runtime models

do all the other work related to the request. In contrast to this, the CGI subprocess must first initialize itself, for example
read the XML file containing the UI definition.

Effectively, the setup time is longer than for‘Sequential execution, but still rather short. The concurrently running
activations are isolated from each other like in CGI, and the operating system takes care to deallocate the resources when
the activation is over. There is no simple way to let the activations share data or other resources.

113.3.3 The JSERV execution model ‘Process_pool

This model combines the advantages of‘Forking and‘Sequential, and is probably the most attractive model for highly
loaded servers. At startup time, a fixed number of processes are spawned (after initialization), and every process of this
pool accepts sequentially the incoming requests. When a new page request arrives it is likely that some of the processes
of the pool are currently busy and that the rest is idle. One of the free processes will get the request, and will be busy until
the request is processed.

It may happen that all processes are busy. The newly arrived request must wait until one of the processes is free again.
(Note: The length of this queue can be specified by the backlog parameter.)

This model can process requests in parallel; however, parallelism is restricted to the fixed number that must be known at
startup time. A good choice is the number of CPUs times a small factor, but there should be enough memory such that no
process is swapped out.

Furthermore, this model avoids the cost of forking for every request, because the processes run sequentially once started.
This results in very low overhead and quick responses.

However, this model also combines the disadvantages of‘Forking and‘Sequential, because the activations for the
requests are neither isolated from each other nor they are not isolated, you simply do not know.

113.3.4 The JSERV execution model ‘Thread_pool

You may wonder why I do not simply follow the Java original and only implement thread pools. There are a num-
ber of arguments against multi-threading, some critising this technique in general, some only applying to the O’Caml
implementation.

• Multi-threading requires a lot of programming discipline. In general, the whole code must be reentrant, and special
means like mutexes, condition variables etc. must be used to ensure that never two threads interfer with each
other in an uncontrolled manner. Unfortunately, there are no tools (like type checkers) that enforce these rules, the
programmer must do it himself. Furthermore, it is very difficult to find the errors by testing the programs, because
the problems often have the character of race conditions that only happen in rare cases. But if you have a lot of
seldom occurring races, the stability of the whole program certainly decreases significantly.

• The O’Caml implementation of multi-threading had some serious bugs in the past, although it was programmed by
an outstanding expert. You may take this as a proof of the previous thesis, but it also means that O’Caml has not
been used very often for multi-threaded programming (otherwise these errors would have been found earlier), and
that the stability cannot (yet) be trusted for production applications.

• Last but not least, the O’Caml implementation has the fundamental restriction that it cannot take advantage from
several CPUs, even if the underlying multi-threading library of the operating system supports this.

I hope this explains why the multi-threaded execution model does not rank as number 1 in the priority list. However, there
are benefits from such a model.

Most important, this is the only model that can combine parallelism with the ability to easily access shared data structures.
The other models (‘Forking and‘Process_pool) can share data only by special means of the operating system (e.g. by
sharing files, or by shared memory that is now available in thebigarray library).

230



WDialog Manual WDialog / Reference / Runtime models

Furthermore, it becomes possible to program servers that respond to multiple protocols. For example, such a server could
combine a web frontend with RPC services. (Like EJB, but I do not see a strict necessity to do that. Both aspects can be
separated.)

No summary yet, as the model is not yet implemented.

113.4 Which model is the right one for me?

Obviously, there is no simple answer. I have tried to enumerate the pros and cons for all the models, and it depends on
your application which arguments count. Maybe the following simplifications point you to the right direction for your
evaluation.

• Development:In this phase of a project the CGI protocol is the best choice. You need not to restart servers to test a
new version of your program.

• Best compromise:If stability and speed both count, I can only recommend JSERV with‘Forking processes. The
processes are isolated from each other, and are properly cleaned up, so you do not have to care about these issues.
It is still fast enough for the majority of applications.

• Maximum performance:That’s very simple, the‘Process_pool is your friend. It allows parallelism almost with-
out performance costs. Formaximumperformance, I would additionally recommend to install the web server and
the JSERV engine on different systems. ForMAXIMUM performance, I would further recommend to install several
instances of the JSERV engine on several systems, and to use JSERV’s load-balancing feature to drive them. The
architecture is scalable, isn’t it.

• Flexibility: Once implemented,‘Thread_pool is probably the most flexible solution. In the meantime, you may
consider to use‘Sequential, and to start threads for background activitities. (Unfortunately, multithreading is not
possible for forked processes because of limitations of O’Caml implementation, so you cannot start threads in the
worker processes of‘Process_pool.)

113.5 Secondary network connections

It is often necessary to open network connections to further services in order to process a request. For example, accessing
database systems is nowadays done in this way. You have several choices for that:

• You can open a new connection for every activation, and close it afterwards. This isolates the accesses best, but this
may cause performance problems.

• An alternative for‘Process_pool is to open only one connection per process, and to use it for all requests per-
formed by the process. For database systems with transactions, a reasonable degree of isolation can be achieved by
closing the current transaction between requests. Note that the configuration parameter ofNetcgi_jserv_app.run
provides the two hooksjs_init_process andjs_fini_process that are called for every process to initialize and
for every process to finalise, respectively. So these functions can open and close the database connection.

231


