(* $Id: netsys_mem.ml 1571 2011-04-08 15:54:11Z gerd $ *) open Printf type memory = (char,Bigarray.int8_unsigned_elt,Bigarray.c_layout) Bigarray.Array1.t external blit_memory_to_string_unsafe : memory -> int -> string -> int -> int -> unit = "netsys_blit_memory_to_string" "noalloc" external blit_string_to_memory_unsafe : string -> int -> memory -> int -> int -> unit = "netsys_blit_string_to_memory" "noalloc" let blit_memory_to_string mem memoff s soff len = let memlen = Bigarray.Array1.dim mem in let slen = String.length s in if len < 0 || memoff < 0 || memoff > memlen - len || soff < 0 || soff > slen - len then invalid_arg "Netsys_mem.blit_memory_to_string"; blit_memory_to_string_unsafe mem memoff s soff len let blit_string_to_memory s soff mem memoff len = let memlen = Bigarray.Array1.dim mem in let slen = String.length s in if len < 0 || memoff < 0 || memoff > memlen - len || soff < 0 || soff > slen - len then invalid_arg "Netsys_mem.blit_string_to_memory"; blit_string_to_memory_unsafe s soff mem memoff len external memory_address : memory -> nativeint = "netsys_memory_address" external getpagesize : unit -> int = "netsys_getpagesize" let pagesize = try getpagesize() with Invalid_argument _ -> 4096 external netsys_alloc_memory_pages : nativeint -> int -> memory = "netsys_alloc_memory_pages" let alloc_memory_pages ?(addr=0n) len = netsys_alloc_memory_pages addr len external alloc_aligned_memory : int -> int -> memory = "netsys_alloc_aligned_memory" external netsys_map_file : Unix.file_descr -> int64 -> nativeint -> bool -> int -> memory = "netsys_map_file" let memory_map_file fd ?(pos=0L) ?(addr=0n) shared size = netsys_map_file fd pos addr shared size external memory_unmap_file : memory -> unit = "netsys_memory_unmap_file" external netsys_zero_pages : memory -> int -> int -> unit = "netsys_zero_pages" let zero_pages mem pos len = let memlen = Bigarray.Array1.dim mem in if len < 0 || pos < 0 || pos > memlen - len then invalid_arg "Netsys_mem.zero_pages (index out of range)"; netsys_zero_pages mem pos len external grab : nativeint -> int -> memory = "netsys_grab" external as_value : memory -> int -> 'a = "netsys_as_value" let as_obj mem offs = Obj.repr(as_value mem offs) external netsys_value_area_add : memory -> unit = "netsys_value_area_add" external netsys_value_area_remove : memory -> unit = "netsys_value_area_remove" let value_area m = netsys_value_area_add m; Gc.finalise netsys_value_area_remove m; () external obj_address : Obj.t -> nativeint = "netsys_obj_address" external hdr_address : Obj.t -> nativeint = "netsys_hdr_address" external init_header : memory -> int -> int -> int -> unit = "netsys_init_header" external cmp_string : string -> string -> int = "netsys_cmp_string" external netsys_init_string : memory -> int -> int -> unit = "netsys_init_string" let init_string_bytelen len = let ws = Sys.word_size / 8 in (* word size in bytes *) ((len + ws) / ws + 1) * ws exception Out_of_space let _ = Callback.register_exception "Netsys_mem.Out_of_space" Out_of_space let init_string mem offset len = let ws = Sys.word_size / 8 in (* word size in bytes *) let memlen = Bigarray.Array1.dim mem in if offset < 0 || len < 0 then invalid_arg "Netsys_mem.init_string"; let blen = init_string_bytelen len in if blen > memlen - offset then raise Out_of_space; netsys_init_string mem offset len; (offset+ws, blen) let init_array_bytelen size = let ws = Sys.word_size / 8 in (* word size in bytes *) (size + 1) * ws let init_array mem offset size = let ws = Sys.word_size / 8 in (* word size in bytes *) let memlen = Bigarray.Array1.dim mem in if offset < 0 || size < 0 then invalid_arg "Netsys_mem.init_array"; let blen = init_array_bytelen size in if blen > memlen - offset then raise Out_of_space; init_header mem offset 0 size; Bigarray.Array1.fill (Bigarray.Array1.sub mem (offset+ws) (size*ws)) '\001'; (offset+ws, blen) let init_float_array_bytelen size = let ws = Sys.word_size / 8 in (* word size in bytes *) if ws = 4 then (2*size + 1) * ws else (size+1) * ws let init_float_array mem offset size = let ws = Sys.word_size / 8 in (* word size in bytes *) let memlen = Bigarray.Array1.dim mem in if offset < 0 || size < 0 then invalid_arg "Netsys_mem.init_array"; let blen = init_float_array_bytelen size in if blen > memlen - offset then raise Out_of_space; init_header mem offset Obj.double_array_tag size; Bigarray.Array1.fill (Bigarray.Array1.sub mem (offset+ws) (size*ws)) '\001'; (offset+ws, blen) type init_value_flag = | Copy_bigarray | Copy_custom_int | Copy_atom | Copy_simulate type custom_ops = nativeint external netsys_init_value : memory -> int -> 'a -> init_value_flag list -> nativeint -> (string * custom_ops) list -> (int * int) = "netsys_init_value_bc" "netsys_init_value" let init_value ?targetaddr ?(target_custom_ops=[]) mem offset v flags = let taddr = match targetaddr with | None -> memory_address mem | Some a -> a in netsys_init_value mem offset v flags taddr target_custom_ops external get_custom_ops : 'a -> string * custom_ops = "netsys_get_custom_ops" external copy_value : init_value_flag list -> 'a -> 'a = "netsys_copy_value" type color = White | Gray | Blue | Black external color : Obj.t -> color = "netsys_color" external set_color : Obj.t -> color -> unit = "netsys_set_color" external netsys_mem_read : Unix.file_descr -> memory -> int -> int -> int = "netsys_mem_read" external netsys_mem_write : Unix.file_descr -> memory -> int -> int -> int = "netsys_mem_write" let mem_read fd mem off len = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_read"; netsys_mem_read fd mem off len let mem_write fd mem off len = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_write"; netsys_mem_write fd mem off len external netsys_mem_recv : Unix.file_descr -> memory -> int -> int -> Unix.msg_flag list -> int = "netsys_mem_recv" (* external netsys_mem_recvfrom : Unix.file_descr -> memory -> int -> int -> Unix.msg_flag list -> int * Unix.sockaddr = "netsys_mem_recvfrom" *) external netsys_mem_send : Unix.file_descr -> memory -> int -> int -> Unix.msg_flag list -> int = "netsys_mem_send" (* external netsys_mem_sendto : Unix.file_descr -> memory -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int = "netsys_mem_sendto" "netsys_mem_sendto_native" *) let mem_recv fd mem off len flags = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_recv"; netsys_mem_recv fd mem off len flags (* let mem_recvfrom fd mem off len flags = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_recvfrom"; netsys_mem_recvfrom fd mem off len flags *) let mem_send fd mem off len flags = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_send"; netsys_mem_send fd mem off len flags (* let mem_sendto fd mem off len flags addr = if len < 0 || off < 0 || len > Bigarray.Array1.dim mem - off then invalid_arg "Netsys_mem.mem_sendto"; netsys_mem_sendto fd mem off len flags addr *) let min_pool_factor = 4 let max_pool_factor = 64 type bigblock = { bb_id : < >; mutable bb_use_counter : int; mutable bb_mem : memory; mutable bb_age : int; } type memory_pool = { pool_block_size : int; mutable pool_blocks : (int * bigblock * bool ref) list; (* The bool is set to [false] if the block is unused *) mutable pool_free_blocks : (memory * int * bigblock) list; (* The int is the GC age *) pool_mutex : Netsys_oothr.mutex; mutable pool_factor : int; mutable pool_free_age : int; } let create_pool bsize = if bsize <= 0 || bsize mod pagesize <> 0 then invalid_arg "Netsys_mem.create_pool"; let m = !Netsys_oothr.provider # create_mutex() in { pool_block_size = bsize; pool_blocks = []; pool_free_blocks = []; pool_mutex = m; pool_factor = min_pool_factor; pool_free_age = 0; } let pool_move_to_free_list p = let age = (Gc.quick_stat()).Gc.major_collections in let ub, fb = List.partition (fun (_, _, is_used) -> !is_used) p.pool_blocks in p.pool_blocks <- ub; (* prerr_endline ("Found new free blocks: " ^ string_of_int (List.length fb));*) p.pool_free_blocks <- (List.map (fun (k,bb,_) -> let m = Bigarray.Array1.sub bb.bb_mem (k * p.pool_block_size) p.pool_block_size in (m, k, bb) ) fb ) @ p.pool_free_blocks; List.iter (fun (_,bb,_) -> bb.bb_use_counter <- bb.bb_use_counter - 1; bb.bb_age <- age ) fb (* let bb_finalise _ = prerr_endline "bb_finalise" *) let pool_alloc_blocks p = pool_move_to_free_list p; if p.pool_free_blocks = [] then ( let age = (Gc.quick_stat()).Gc.major_collections in (* Nothing free, so we have to allocate new blocks: *) let bigblock_size = p.pool_factor * p.pool_block_size in let bigblock_mem = try alloc_memory_pages bigblock_size with Invalid_argument _ -> (* OS does not support it... *) Bigarray.Array1.create Bigarray.char Bigarray.c_layout bigblock_size in let bigblock = { bb_id = (object end); bb_use_counter = 0; bb_mem = bigblock_mem; bb_age = age; } in (* Gc.finalise bb_finalise bigblock_mem; *) for k = 0 to p.pool_factor - 1 do let m = Bigarray.Array1.sub bigblock_mem (k * p.pool_block_size) p.pool_block_size in p.pool_free_blocks <- (m, k, bigblock) :: p.pool_free_blocks done; (* prerr_endline ("alloc blocks: " ^ string_of_int p.pool_factor); *) p.pool_factor <- min max_pool_factor (p.pool_factor * 2); ) else p.pool_factor <- min_pool_factor let pool_free_blocks p = let age = (Gc.quick_stat()).Gc.major_collections in if age > p.pool_free_age then ( pool_move_to_free_list p; let db, fb = List.partition (fun (_, _, bb) -> bb.bb_use_counter = 0 && age - bb.bb_age >= 2) p.pool_free_blocks in (* Sort the free blocks, to achieve that big, filled blocks are preferred when new blocks are taken from the free list. So small and quite empty blocks are more likely to be given back to the OS. - Hopefully this is not too expensive. *) let fb_sorted = List.sort (fun (_,_,bb1) (_,_,bb2) -> (* highest use counter first, then oldest *) match bb2.bb_use_counter - bb1.bb_use_counter with | 0 -> Oo.id bb1.bb_id - Oo.id bb2.bb_id | d -> d ) fb in p.pool_free_blocks <- fb_sorted; p.pool_free_age <- age; (* prerr_endline ("pool_free_blocks db=" ^ string_of_int (List.length db))*) (* unmap_file is not supported for the "bigblock" approach CHECK *) ) let set_false v _ = (* prerr_endline "finaliser"; *) v := false let pool_alloc_memory p = Netsys_oothr.serialize p.pool_mutex (fun () -> let do_free_check = ref true in if p.pool_free_blocks = [] then ( pool_alloc_blocks p; do_free_check := false ); match p.pool_free_blocks with | (m,k,bb) :: l -> p.pool_free_blocks <- l; bb.bb_use_counter <- bb.bb_use_counter + 1; let is_used = ref true in let free = set_false is_used in (* avoid referencing m ! *) if !do_free_check && l <> [] then pool_free_blocks p; p.pool_blocks <- (k,bb,is_used) :: p.pool_blocks; Gc.finalise free m; m | [] -> assert false ) () let pool_block_size p = p.pool_block_size let default_pool_size = pagesize * 16 let default_pool = create_pool default_pool_size let pool_report p = let b = Buffer.create 500 in bprintf b "POOL GENERAL PARAMETERS:\n\n"; bprintf b "pool_block_size=%d\n" p.pool_block_size; bprintf b "pool_factor=%d\n" p.pool_factor; bprintf b "length pool_blocks=%d (used+prop)\n" (List.length p.pool_blocks); bprintf b "length pool_free_blocks=%d\n\n" (List.length p.pool_free_blocks); let bb_tab = Hashtbl.create 10 in let add_bb bb = if not (Hashtbl.mem bb_tab bb.bb_id) then ( let cnt_used = ref 0 in let cnt_prop = ref 0 in Hashtbl.add bb_tab bb.bb_id (bb, cnt_used, cnt_prop) ) in List.iter (fun (_,bb,_) -> add_bb bb) p.pool_blocks; List.iter (fun (_,_,bb) -> add_bb bb) p.pool_free_blocks; List.iter (fun (k,bb,is_used) -> let (_,cnt_used,cnt_prop) = Hashtbl.find bb_tab bb.bb_id in if !is_used then incr cnt_used else incr cnt_prop ) p.pool_blocks; bprintf b "POOL BY BIGBLOCK:\n\n"; Hashtbl.iter (fun bb_id (bb,cnt_used,cnt_prop) -> let size = Bigarray.Array1.dim bb.bb_mem / p.pool_block_size in bprintf b "block %d: age=%d size=%d used=%d propagate=%d free=%d\n" (Oo.id bb_id) bb.bb_age size !cnt_used !cnt_prop (size - !cnt_used - !cnt_prop) ) bb_tab; Buffer.contents b